



## Uptake of zinc by plants

#### Teacher and technician sheet

This practical applies the analysis of zinc using zincon (see Zinc by zincon assay).

### Treating and growing the plants

### **Equipment and materials**

Each student or pair of students will require:

- Peat-free general purpose compost
- Plant pots and trays to stand them on
- 250 cm<sup>3</sup> measuring cylinder (wash and re-use with different solutions)
- 1 dm<sup>3</sup> volumetric flask x 2

- 24 to 40 seeds, either tomato or Indian mustard
- Zinc sulfate solution containing 0.01 g dm<sup>-3</sup> Zn<sup>2+</sup> (10 ppm) (800 cm<sup>3</sup>)
- Fertilizer solution (as required)
- Greenhouse

Make sure students wear eye protection.

# Determining zinc ions remaining in the soil and in the plants Equipment and materials

For each method a student or pair of students will require:

- Watch glass x 2
- Drying oven
- Electronic balance (weighing to 3 decimal places)
- 50 cm<sup>3</sup> beaker x 2
- Sintered glass crucible x 2 or glass wool and filter funnel
- Mortar and pestle
- Concentrated hydrochloric acid (12 cm<sup>3</sup>)
- 1 mol dm<sup>-3</sup> sodium hydroxide solution (2 cm<sup>3</sup>)
- Equipment and materials for zincon assay (see Zinc by zincon assay)

Make sure students wear eye protection. Concentrated hydrochloric acid is corrosive. 1 mol dm<sup>-3</sup> sodium hydroxide solution is corrosive.

#### Standard solution

• Zinc sulfate solution: Weigh out 4.39 g zinc sulphate-7-water and make up to 100 cm<sup>3</sup> in a volumetric flask. Then take 1 cm<sup>3</sup> of the solution and dilute to 1 dm<sup>3</sup>.