

Determination of thiocyanate using iron(III)

Student worksheet

Principle

Thiocyanate ions react with iron(III) ions in solution to form an intense red coloured complex ion:

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow [FeSCN]^{2+}(aq)$$

or, more fully, $[Fe(H_2O)_6]^{3+}(aq) + SCN^{-}(aq) \rightarrow [Fe(H_2O)_5SCN]^{2+}(aq) + H_2O(I)$

You can use this reaction for the quantitative analysis of low concentrations of thiocyanate ions. You can find the concentration of the solution of thiocyanate ions using a colorimeter. You can also use simple colour matching although the results will be less precise.

Equipment and materials

- burettes x 3
- 100 cm³ volumetric flasks x 7 (or use one, thoroughly washing it between samples)
- colorimeter and suitable filter (blue) a solution of the complex displays maximum absorption at 480 nm
- potassium thiocyanate containing 250 mg dm⁻³ thiocyanate (250 ppm) (30 cm³)
- iron(III) chloride solution 0.41 mol d⁻³ (70 cm³)
 - solution of unknown thiocyanate concentration (10 cm³)

Method

Care: Wear eye protection. Iron(III) chloride solution is an irritant.

- 1. Fill three burettes, one with the potassium thiocyanate solution containing 250 ppm thiocyanate, one with deionised water and one with iron(III) chloride solution.
- 2. Add 0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 cm³ of the potassium thiocyanate solution to six 100 cm³ volumetric flasks A-F. Add deionised water to bring the volume in each flask to about 80 cm³.
- 3. To each flask add $10~{\rm cm}^3$ iron(III) chloride solution and then add deionised water to bring volume to $100~{\rm cm}^3$. Mix the solutions thoroughly.

Flask	Α	В	С	D	Е	F
Volume of potassium thiocyanate solution / cm ³	0.0	2.0	4.0	6.0	8.0	10.0
ppm thiocyanate	0	5	10	15	20	25

- 4. Measure the absorbance of each solution using a colorimeter.
- 5. Plot a graph of absorbance (*y* axis) against thiocyanate concentration (in ppm thiocyanate) (*x* axis) for the six solutions.
- 6. Add 10 cm³ of the solution of unknown thiocyanate concentration to a 100 cm³ volumetric flask and add deionised water to bring the volume in the flask to about 80 cm³.
- 7. Add 10 cm³ iron(III) chloride solution to the flask and then add deionised water to bring volume to 100 cm³ and mix the solution thoroughly.
- 8. Measure the absorbance of the solution using a colorimeter.
- 9. Use the graph to find the concentration of thiocyanate ions as ppm thiocyanate in the unknown solution.