

Zinc by zincon assay

Student worksheet

Principle

Zn(II) ions in solution react with zircon to form a blue complex. You can use this reaction for the quantitative analysis of low concentrations of Zn²⁺(aq) in solution. You can find the concentration of the solution of Zn²⁺ using a colorimeter. You can also use simple colour matching although the results will be less precise.

Equipment and materials

- test tube x 6
- 5 cm³ volumetric flask x 7 (or use one, thoroughly washing it between samples)
- 1 cm³ graduated pipettes x 3
- colorimeter and suitable filter (red) A solution of the complex displays maximum absorption at 620 nm.
- buffer solution, pH 9 (3.5 cm³)
- Zincon solution (2.1 cm³)
- zinc sulfate solution containing 0.01 g dm⁻³ Zn²⁺ (10 ppm) (24 cm³)
- solution of unknown Zn²⁺ concentration (10 cm³)

Method

Care: Wear eye protection.

- 1. Fill two burettes, one with the 10 ppm Zn²⁺ solution and one with deionised water
- 2. Label six boiling tubes and use the burettes to add the volumes of solutions shown in the table:

3.

Beaker	Α	В	С	D	Е	F
Volume of 10 ppm Zn ²⁺ solution / cm ³	8.0	6.0	4.0	3.0	2.0	1.0
Volume of water / cm ³	2.0	4.0	6.0	7.0	8.0	9.0
Concentration of Zn ²⁺ / ppm	8.0	6.0	4.0	3.0	2.0	1.0

- 4. Use a graduated pipette to transfer a 1 cm³ aliquot of the sample containing 8.0 ppm of Zn²+ to a 5 cm³ volumetric flask.
- 5. Add 0.5 cm³ of buffer solution to the sample and mix well.
- 6. Add zincon solution drop by drop until the red colour is one drop in excess, mix well again and dilute to 5 cm³ using distilled or deionised water.
- 7. Measure the absorbance of the solution.
- 8. Repeat the procedure for the solutions containing 6.0, 4.0, 3.0, 2.0, 1.0 ppm Zn²⁺ and for a solution where the concentration of Zn²⁺ is unknown.
- 9. Plot a graph of absorbance (y axis) against Zn^{2+} (aq) concentration (in ppm Zn^{2+}) (x axis) for the six samples A-F.
- 10. Use the graph to find the concentration in ppm of Zn²⁺(aq) in the unknown solution.