Zinc by zincon assay

Student worksheet

Principle

Zn (II) ions in solution react with zircon to form a blue complex. You can use this reaction for the quantitative analysis of low concentrations of $\mathrm{Zn}^{2+}(\mathrm{aq})$ in solution. You can find the concentration of the solution of Zn^{2+} using a colorimeter. You can also use simple colour matching although the results will be less precise.

Equipment and materials

- test tube $\times 6$
- $5 \mathrm{~cm}^{3}$ volumetric flask $x 7$ (or use one, thoroughly washing it between samples)
- $1 \mathrm{~cm}^{3}$ graduated pipettes $\times 3$
- colorimeter and suitable filter (red) A solution of the complex displays maximum absorption at 620 nm .
- buffer solution, $\mathrm{pH} 9\left(3.5 \mathrm{~cm}^{3}\right)$
- Zincon solution ($2.1 \mathrm{~cm}^{3}$)
- zinc sulfate solution containing 0.01 $\mathrm{g} \mathrm{dm}^{-3} \mathrm{Zn}^{2+}(10 \mathrm{ppm})\left(24 \mathrm{~cm}^{3}\right)$
- solution of unknown Zn^{2+} concentration ($10 \mathrm{~cm}^{3}$)

Method

Care: Wear eye protection.

1. Fill two burettes, one with the $10 \mathrm{ppm} \mathrm{Zn}^{2+}$ solution and one with deionised water
2. Label six boiling tubes and use the burettes to add the volumes of solutions shown in the table:
3.

Beaker	A	B	C	D	E	F
Volume of $\mathbf{1 0} \mathbf{~ p p m ~} \mathbf{Z n}^{2+}$ solution $/ \mathbf{~ c m}^{3}$	8.0	6.0	4.0	3.0	2.0	1.0
Volume of water $/ \mathbf{c m}^{3}$	2.0	4.0	6.0	7.0	8.0	9.0
Concentration of $\mathbf{Z n}^{2+} / \mathbf{p p m}$	8.0	6.0	4.0	3.0	2.0	1.0

4. Use a graduated pipette to transfer a $1 \mathrm{~cm}^{3}$ aliquot of the sample containing 8.0 ppm of Zn^{2+} to a $5 \mathrm{~cm}^{3}$ volumetric flask.
5. Add $0.5 \mathrm{~cm}^{3}$ of buffer solution to the sample and mix well.
6. Add zincon solution drop by drop until the red colour is one drop in excess, mix well again and dilute to $5 \mathrm{~cm}^{3}$ using distilled or deionised water.
7. Measure the absorbance of the solution.
8. Repeat the procedure for the solutions containing $6.0,4.0,3.0,2.0,1.0 \mathrm{ppm}_{\mathrm{Zn}^{2+}}$ and for a solution where the concentration of Zn^{2+} is unknown.
9. Plot a graph of absorbance (y axis) against $\mathrm{Zn}^{2+}(\mathrm{aq})$ concentration (in ppm Zn^{2+}) (x axis) for the six samples A-F.
10. Use the graph to find the concentration in ppm of $\mathrm{Zn}^{2+}(\mathrm{aq})$ in the unknown solution.
