

Colorimetric analysis of aspirin

Student worksheet

Health and safety note:

Wear appropriate eye protection (splash-proof goggles). 1 mol dm⁻³ sodium hydroxide solution is corrosive. Iron(III) chloride solutions are an irritant at concentrations greater than 0.2 mol dm⁻³.

Principle

Aspirin hydrolyses to produce 2-hydroxybenzoic acid and ethanoic acid (shown below).

2-hydroxybenzoic acid produces a violet-blue complex when mixed with iron(III) ions. The amount of 2-hydroxybenzoic acid in a solution made by hydrolysing aspirin can be determined by adding iron(III) ions and measuring the intensity of the violet-blue solution. From this the amount of aspirin can be calculated.

Equipment and materials

- Colorimeter and suitable filter (green/yellow). A solution of the complex displays maximum absorption at about 530 nm
- Cuvette
- 100 cm³ conical flask
- Bunsen burner, tripod, gauze and heat-proof mat (or an electric hotplate)
- Aspirin Harmful

- 500 cm³ volumetric flask (x2)
- 50 cm³ burette
- 100 cm³ volumetric flask (x5)
- 1 cm³ pipette + pipette filler
- 1 mol dm⁻³ sodium hydroxide solution Corrosive
- 0.02 mol dm⁻³ iron(III) chloride solution

Note: the volumetric flasks need to be washed thoroughly before being used to make a new solution, as does the pipette which should also be rinsed 2-3 times with the new solution before measuring out the required volume.

Method: Preparing standard solutions and obtaining a calibration graph

- 1. Weigh accurately about 0.4 g of aspirin into a 100 cm³ conical flask, add 10 cm³ of 1.0 mol dm⁻³ sodium hydroxide solution and warm the mixture gently at 50 °C for ten minutes.
- 2. Cool the solution and transfer quantitatively to a 500 cm³ volumetric flask. Make up to the mark with deionised water. This is the stock solution. It contains the hydrolysis product (sodium 2-hydroxybenzoate) from a 0.80 g dm⁻³ solution of aspirin.

3. Use a burette to measure 10 cm³ of stock solution into a 100 cm³ volumetric flask. Make it up to volume with 0.02 mol dm⁻³ iron(III) chloride solution. This is standard solution A. In a similar way make up standard solutions B to G using 8 cm³, 6 cm³, 4 cm³, 2 cm³, 1 cm³ and 0.5 cm³ of stock solution.

Standard solution	Volume of stock solution /cm ³	Concentration equivalent of aspirin /g dm ⁻³
Α	10	0.080
В	8	0.064
С	6	0.048
D	4	0.032
E	2	0.016
F	1	0.008
G	0.5	0.004

- 4. Measure the absorbance of each standard solution using the colorimeter, fitted with a suitable filter.
- 5. Plot a graph of absorbance against concentration equivalent of aspirin. This is the calibration graph.

Method: Analysing aspirin tablets

- 1. Make a note of the mass of aspirin the manufacturer states is in each tablet. This is given on the packaging.
- 2. Weigh accurately one tablet and put it into a 100 cm³ conical flask. Carefully crush the tablet with a stirring rod and add 10 cm³ of 1 mol dm⁻³ sodium hydroxide solution and warm at 50 °C gently for ten minutes.
- 3. Cool the solution and transfer quantitatively to a 500 cm³ volumetric flask, if necessary filtering to remove any insoluble material. Make up to the mark with deionised water.
- 4. Pipette 1 cm³ of into a 10 cm³ volumetric flask. Make it up to volume with 0.02 mol dm⁻³ iron(III) chloride solution. Measure the absorbance of the unknown using the colorimeter, fitted with a suitable filter.
- 5. Use the calibration graph to determine the concentration of aspirin in the solution and use this to work out the mass of aspirin in the tablet.