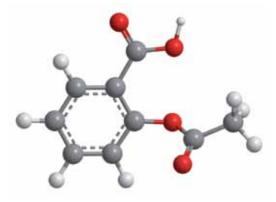

EXERCISE 3

Body in a Lab: Aspirin Overdose


INTRODUCTION

A body has been found in the Lab! The deceased, Mr Blue, was known to be taking aspirin and a sample of his blood plasma has been sent for analysis. Use UV spectroscopy to determine the concentration of aspirin in the body and ascertain if the amount present was enough to be the cause of death.

Analysis of Salicylate in Blood Plasma by UV-Visible Spectroscopy

Aspirin or acetyl salicylic acid is a widely available drug with many useful properties. It was one of the first drugs to be commonly available and it is still widely used with approximately 35,000 tonnes produced and sold each year, equating to approximately 100 billion aspirin tablets.

RSC Advancing the Chemical Sciences

Therapeutic levels taken after a heart attack are typically 150 – 300 mg/L and for post by-pass operations 75 mg/L. The levels of salicylate present in blood plasma can be analysed using UV-visible spectroscopy to indicate if the subject has taken a therapeutic dose or an overdose. (see following table).

METHOD

This method involves measuring the absorbance of the redviolet complex of ferric and salicylate ions at about 530 nm using a UV/Visible spectrometer.

A 5% iron (III) chloride solution has been prepared for you (5g iron (III) chloride in 100 ml of de-ionised water).

1. Preparation of Salicylate Calibration Standards

A stock solution of 2000 mg/L salicylate in 250 ml of de-ionised water has been prepared for you by dissolving 580 mg sodium salicylate in a 250 ml volumetric flask.

Make up Standard Calibration Solutions (if this has not already been done for you)

In 100 ml standard volumetric flask dilute appropriate volumes of the stock solution to give 100, 200, 300, 400, and 500 mg/L salicylate calibration standards using the dilutions given below.

Therapeutic	< 300 mg/L
Moderate Overdose	500 – 750 mg/L
Severe Overdose	>750 mg/L

Most adult deaths occur when the measured plasma level is greater than 700 mg/L. (Note: the maximum salicylate plasma levels usually occur approximately 4-6 hrs after ingestion).

2. Prepare a Blank

In a test tube prepare a blank solution by taking 1 ml of de-ionised water and adding 4 ml of 5% iron (III) chloride solution.

3. Prepare Standards and Unknown Plasma Sample for UV/Vis Analysis

Prepare each of the standards and the unknown plasma sample by pipetting 1 ml into a separate test tubes and adding **4 ml of 5% iron (III) chloride** solution to each (making sure each is carefully mixed).

4. Record the Absorbance

Transfer the calibration solutions, blank and unknown sample to separate cuvettes to record the absorbance. For each sample record the absorbance in the visible region between 400 – 600 nm. A peak should be observed at about 530 nm (see your demonstrator for instructions on using the UV/ Visible spectrometer).

CONCENTRATION	DILUTION
100 mg/L	5 ml Stock Salicylate Solution in 100 ml De-ionised water
200 mg/L	10 ml Stock Salicylate Solution in 100 ml De-ionised water
300 mg/L	15 ml Stock Salicylate Solution in 100 ml De-ionised water
400 mg/L	20 ml Stock Salicylate Solution in 100 ml De-ionised water
500 mg/L	25 ml Stock Salicylate Solution in 100 ml De-ionised water

ANALYSIS OF RESULTS

 Using the Beer-Lambert law plot the absorbance versus concentration calibration graph for the standards and using this find the unknown concentration of the salicylate present in the plasma. **2.** Use this result to decide if the subject had taken a therapeutic or life threatening dose.

REFERENCES

- 1. Encyclopaedia of Analytical Science, ed. Paul Worsfold, Alan Townshend, Colin Poole, Worsfold, Paul J. (2005), 543.003 ENC
- **2.** The Aspirin Foundation

http://www.aspirin-foundation.com/what/index.htm

- 3. Article by Professor A.N.P. van Heijst/ Dr A. van Dijk http:// www.inchem.org/documents/pims/pharm/aspirin.htm
- 4. Analysis of Analgesics http://faculty.mansfield.edu/bganong/ biochemistry/aspirin.htm
- 5. TLC of Analgesic Drugs http://www2.volstate.edu/msd/CHE/122/Labs/TLC.htm

MATERIALS

Chemicals

- De-ionised water
- 50 ml per group 5% iron (III) chloride solution (5g iron (III) chloride in 100 ml de-ionised water)
- 2000 mg/L stock salicylate solution for preparing calibration standard solutions (580 mg sodium salicylate in 250 ml de-ionised water) give 100 ml per group if students to prepare standard solutions themselves.
- 1 ml per group unknown salicylate solution (12.5 ml stock salicylate in 100 ml de-ionised water)
- 1ml per group standard solutions

Stock Salicylate Solution in 100 ml De-ionised water
5 ml
10 ml
15 ml
20 ml
25 ml

Apparatus

Scanning Vis Spectrometer 400-600 nm

Items per group

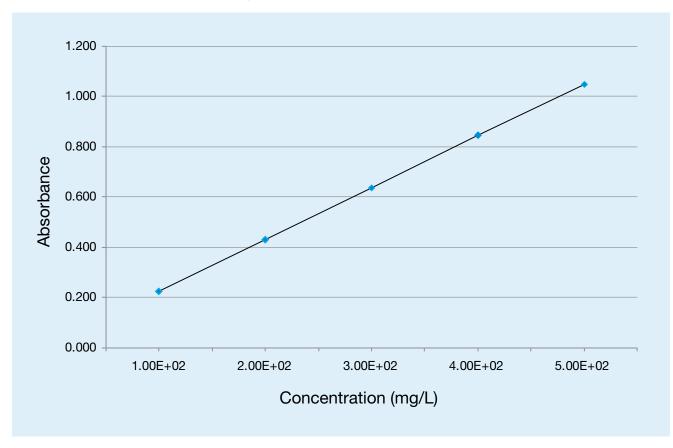
- 7 x disposable cuvettes and lids
- 7 x test tubes and test tube rack
- 5 ml graduated pipette
- 1 ml graduated pipette
- Wash bottle
- Pipette filler
- Disposable pipettes for filling cuvettes

Additional Optional Apparatus for Calibration Standard Solutions

- 5 x 100 ml volumetric flasks
- Suitable bulb or graduated pipettes

Admin

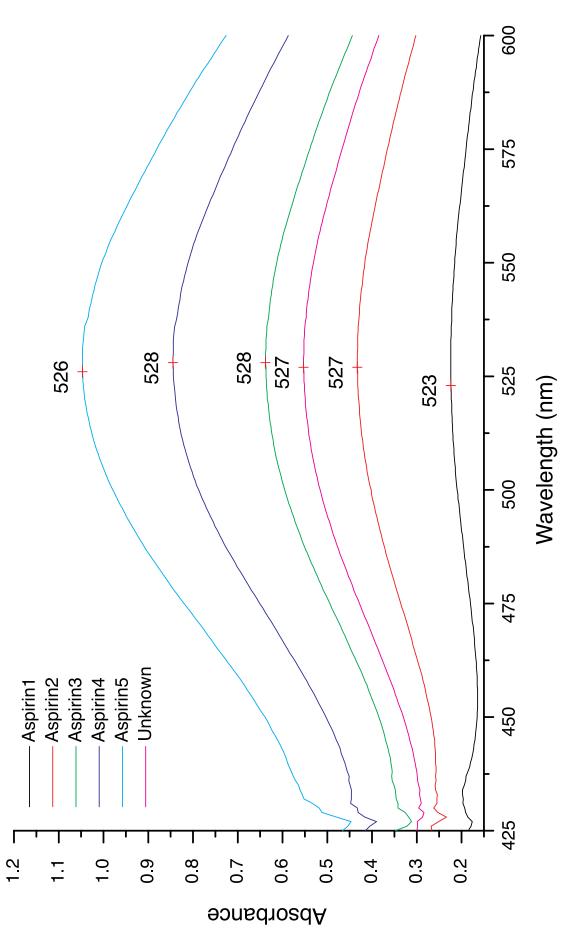
- Posters
- Scripts
- · Risk assessment and hazard sheets
- Sample spectra
- Feedback forms
- Pens


Please note

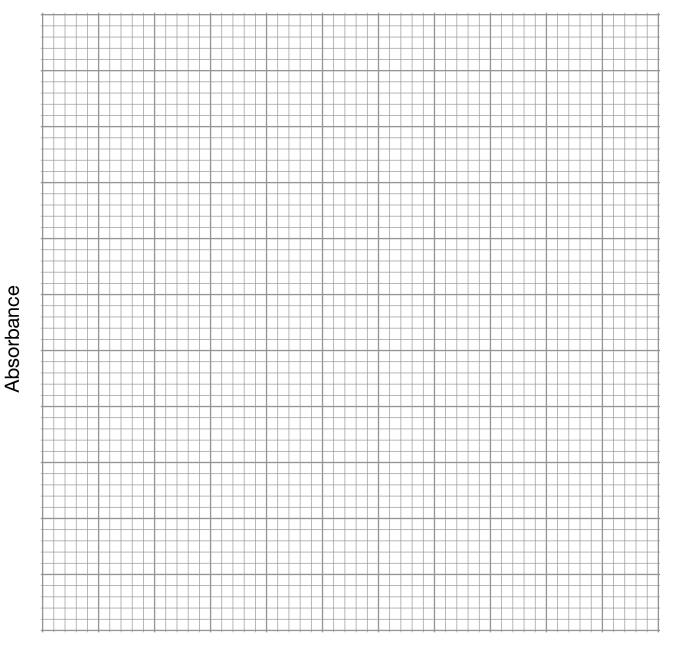
This scenario is continued in the IR section and concluded in the MS section.

RESULTS

SAMPLE	ABSORBANCE	CHOSEN PEAK WAVELENGTH (nm)
Blank De-ionised Water	0	528 nm
100 mg/L Calibration Soln	0.224	528 nm
200 mg/L Calibration Soln	0.433	528 nm
300 mg/L Calibration Soln	0.638	528 nm
400 mg/L Calibration Soln	0.845	528 nm
500 mg/L Calibration Soln	1.047	528 nm
Plasma Sample	0.533	528 nm


Beer-Lambert Calibration Plot – Salicylate in Blood Plasma

Analysis of Results


- 1. The concentration of the salicylate present in the plasma is 250 mg/L
- 2. This is a therapeutic dose.

MODEL SPECTRA

STUDENT WORK SHEET

SAMPLE	ABSORBANCE	CHOSEN PEAK WAVELENGTH (nm)
Blank De-ionised Water		
100 mg/L Calibration Soln		
200 mg/L Calibration Soln		
300 mg/L Calibration Soln		
400 mg/L Calibration Soln		
500 mg/L Calibration Soln		
Plasma Sample		

Concentration (mg/L)

