A selection of resources to start advanced Chemistry lessons for 14-18 year olds

Kristy Turner and Catherine Smith

RSC School Teacher Fellows 2011-12
Foreword

Kristy graduated from the University of Bradford in 2002 with an MChem degree before taking up a PhD at the University of Glasgow. The promotion of her research supervisor meant a move to the University of Manchester in 2004 and in 2006 Kristy moved into secondary teaching through the Graduate Teacher Programme. Kristy has spent much of her teaching career in the state sector, teaching from 2006 until 2011 at Westhoughton High School in Bolton, an 11-18 community comprehensive school where she was promoted to Head of Chemistry. Kristy returned to the University of Manchester for her fellowship year 2011-12 and now teaches Chemistry at Bolton School Boys’ Division. She retains an honorary fellowship at the University of Manchester where she still participates in outreach and teaching and learning projects.

Catherine graduated from the University of Sheffield in 1998 with an MChem degree before moving to the University of Cambridge to undertake PhD studies in organic synthesis. Following postdoctoral work as a Junior Research Fellow at Girton College, Cambridge, Catherine moved into secondary teaching through the Graduate Teacher Programme. She has been teaching at John Cleveland College, a 14-19 high school in Hinckley, Leicestershire since 2006 and in 2009 was appointed an Advanced Skills Teacher working to improve teaching and learning across Leicestershire. Catherine spent her fellowship year at the University of Leicester and returned to teach at John Cleveland College in September 2012.

Introduction

This new collection of starters follows directly on from our previous edition and covers the more advanced syllabus areas. Again, our aim is to make planning 3 or 4 part lessons easy for teachers by providing a variety of short activities to help embed learning in the important skill areas of chemistry. We hope you enjoy using them in your lessons.

Kristy and Catherine

2013
Contents

1. Kinetics
 1.1 Rate determining step
 1.2 Calculating reaction rate
 1.3 Measuring reaction rate in the lab
 1.4 Determining the rate equation
 1.5 Arrhenius and rate

Kinetics answers

2. Equilibria
 2.1 The equilibrium constant, K_c
 2.2 Calculations with K_c
 2.3 Le Chatelier and K_c
 2.4 The equilibrium constant, K_p
 2.5 The solubility product, K_{sp}

Equilibria answers

3. Acids and Bases
 3.1 pH and K_w
 3.2 pH and acids
 3.3 pH and bases
 3.4 Acid-base titrations
3.5. Buffer solutions

3.6. More complex buffer calculations

Acids and bases answers

4. **Carbonyl chemistry**

4.1. Oxidation of alcohols

4.2 Tests for aldehydes and ketones

4.3 Carbonyl functional groups

4.4 Reactions of carboxylic acids

4.5 Reductions of carbonyl groups

4.6 Esters

4.7 Saponification

4.8 Acids, acid chlorides and acid anhydrides

4.9 Synthesis from carbonyls

Carbonyl chemistry answers

5. **Aromatic chemistry**

5.1 Naming aromatic compounds

5.2 Industrially important molecules

5.3 Structure of benzene

5.4 Electrophilic substitution

5.5 Synthetic routes with benzene

Aromatic chemistry answers

6. **Amines**
6.1. Classifying amines and amides

6.2. Properties of amines

6.3. Amine mechanisms

6.4. Amino acids

6.5. Amino acids and pH

6.6. Amine preparation

Amines answers

7. Polymers

7.1. Common polymers

7.2. Condensation polymers

7.3. Poly(alkenes)

8. Structure determination

8.1. Simple chemical tests

8.2. Functional group test match up

8.3. 1H NMR spectroscopy

8.4. Fragmentation in the mass spectrometer

8.5. 13C NMR spectroscopy

8.6. Molecular true or false

8.7. Thin layer chromatography

8.8. Gas chromatography-mass spectrometry

Structure determination answers

9. Organic synthesis
9.1. Organic transformations 1
9.2. Organic transformations 2
9.3. Organic transformations 3

Organic synthesis answers

10. Thermodynamics

10.1. Important definitions
10.2. Born-Haber cycles
10.3. Enthalpy of solution
10.4. Entropy
10.5. Gibbs free energy

11. Periodicity

11.1 Period 3 Oxides Summary
11.2 Reactions of Period 3 oxides
11.3 Structure and bonding in Period 3 oxides

12. Electrochemical cells

The electrochemical series (reference table)

12.1. Redox reactions
12.2. Standard electrode potentials
12.3. Calculations with electrochemical cells
12.4. Using E_f values to predict reactions
12.5. Applications of electrochemical cells

Redox equilibria answers

13. Transition metal chemistry
13.1. Transition metal recap
13.2. Transition metal complexes
13.3. Colours of complex ions
13.4. Colorimetry
13.5. Redox titrations
13.6. Redox chemistry of transition metals
13.7. Transition metals as catalysts

Transition metal chemistry answers

14. Inorganics in aqueous solution

14.1. Acid-base chemistry
14.2. Brønsted-Lowry or Lewis base?
14.3. Ligand substitution reactions
14.4. Inference from aqueous tests

Inorganics in aqueous solution answers