Approaching exam calculations

Education in Chemistry

September 2019
rsc.li/2KkvM9n

Build up the complexity of the calculations you set students until they are ready to tackle exam-style problems.

1. Begin with relatively simple questions that don't involve any unit conversions or any rearrangement of the formula.
eg What concentration would result if you dissolved 20 g of sodium chloride in $10 \mathrm{dm}^{3}$ water?
2. Introduce questions that ask for mass and so involve rearrangement of the formula.
eg What mass of sodium chloride would be present in $10 \mathrm{dm}^{3}$ of a solution with a concentration of 2 g.dm ${ }^{-3}$?
3. Introduce questions that ask for the volume of the solution and so involve rearrangement of the formula.
eg What volume of a $2 \mathrm{~g} \cdot \mathrm{dm}^{-3}$ solution would contain 10 g ?
4. Ask students to invent their own questions using the following mix-and-match templates.

What volume..

have \qquad g of \qquad at a concentration of \qquad g.dm ${ }^{-3}$

What mass of \qquad \ldots
in \qquad dm^{3} of solution

What concentration.
have \qquad g of \qquad
at a concentration of \qquad g.dm ${ }^{-3}$
5. Introduce questions that involve unit conversions but not rearrangement of the formula.
eg What would the concentration be in $\mathrm{g} \cdot \mathrm{dm}^{-3}$ if 50 g of sodium chloride was dissolved in $250 \mathrm{~cm}^{3}$?
6. Finally tackle a past exam question such as this:

Calculate the mass of sodium hydroxide that must be dissolved in water to make $200 \mathrm{~cm}^{3}$ of solution of concentration $60 \mathrm{~g} . \mathrm{dm}^{-3}$.

a) Ask 'What are we looking for?' and 'What will its units be?' Highlight or circle it.
b) Ask 'What do we know?' (and think 'what do the units tell us?' In this case the units cm^{3} tell us that we have a volume of $200 \mathrm{~cm}^{3}$). Highlight or circle them.
c) Ask 'Write down the formula that relates these quantities.' (Hint: 'what do the units tell us?')
d) Ask 'Do the prefixes match?' In this case we have cm^{3} and dm^{3} so convert $200 \mathrm{~cm}^{3}$ to dm^{3}.
e) Substitute in the numbers with their units into the formula then rearrange as required. (Alternatively rearrange the formula first). Ensure that the units cancel out appropriately.

Model answer:

Calculate the mass of sodium hydroxide that must be dissolved in water to make $200 \mathrm{~cm}^{3}$ of solution of concentration $60 \mathrm{~g} . \mathrm{dm}^{-3}$.
a) We are trying to calculate the mass - units should be g.
b) We know the volume is $200 \mathrm{~cm}^{3}$ (cm^{3} is a unit for volume).

We know the concentration is 60 g.dm ${ }^{-3}$
c) concentration $\left(\frac{\mathrm{g}}{{d m^{3}}^{3}}\right)=\frac{\text { mass }(\mathrm{g})}{\text { volume }\left(\mathrm{dm}^{3}\right)}$
d) $200 \mathrm{~cm}^{3}$ is $0.2 \mathrm{dm}^{3}$
e) mass $=$ concentration \times volume $=60 \frac{g}{d m^{3}} \times 0.2 \mathrm{dm}^{3}=12 \mathrm{~g}$

