Nuclear decommissioning: Turning waste into Wealth

The chemistry of cake

Tzany Kokalova
University of Birmingham

Contents

- Yellowcake and its uses.
- From uranium ore to yellowcake:
 - impurities,
 - solvent extraction,
 - neutralisation,
 - precipitation.
- Summary.

Yellowcake and its uses

Yellowcake refers to a substance produced after purification and concentration of uranium from ore, using acid leaching techniques and consists of $\sim 80\%$ triuranium octoxide (U_3O_8).

Impure uranium ore consists of UO₂, UO₃, U₃O₈ and impurities.

Purification of uranium ore and extraction of U₃O₈ (yellowcake) comprise the first stage in the cycle that leads to reactor fuel.

Image credit: Argonne National Laboratory

Density: 9.6 g/m³ BP: 2878 °C

Yellowcake extraction 1

Leaching

Uranium ore crushed & ground

Uranium leached with sulfuric acid

Prior to leaching, the crushed ore is heated to ~750 °C to decompose compounds that could effervesce.

Leaching with sulfuric acid (H₂SO₄):

For the case of (amphoteric oxide) UO_3 . $UO_3(s) + 2H^+(aq) \rightarrow UO_2^{2+}(aq) + H_2O$ $UO_2^{2+}(aq) + 3SO_4^{2-}(aq) \rightarrow UO_2(SO_4)_3^{4-}(aq)$

Image credit: Geomartin via Wikimedia Commons (CC BY-SA 3.0)

Yellowcake extraction 2

Solvent extraction

Solvent extraction: amines in kerosene

Solvent extraction with tertiary amines in kerosene (note phase change for UO₂):

$$2R_3N(org) + H_2SO_4 \rightarrow (R_3NH^+)_2SO_4$$

[R = alkyl grouping $\rightarrow C_nH_{2n+1}$]
 $2(R_3NH^+)_2SO_4^{2-}(org) + UO_2(SO_4)_3^{4-}(aq) \rightarrow (R_3NH^+)_4UO_2(SO_4)_3^{4-}(org) + 2SO_4^{2-}(aq)$

Loaded solvent is treated to remove impurities.

Impurities (e.g. silica, zirconates) stay in aqueous phase.

Yellowcake extraction 2

Precipitation & oxidation 1

Ammonium sulfate & vacuum evaporation removes solvents

Addition of ammonium sulfate followed by heating removes solvents:

 $(R_3NH^+)_4UO_2(SO_4)_3^{4-}(org) + 2(NH_4)_2SO_4(aq) \rightarrow 4R_3N(org) + (NH_4)_4UO_2(SO_4)_3(aq) + 2H_2SO_4(aq)$ Return of acid and amine.

Precipitation & oxidation 2

Ammonia
added ->
oxidation,
precipitation
filtration

Heating yields concentrated U₃O₈ (yellowcake)

Precipitation of $(NH_4)_2U_2O_7$ using gaseous ammonia:

 $6NH_3(g) + 2UO_2(SO_4)_3^{4-} + 3H_2O \rightarrow (NH_4)_2U_2O_7(s) + 2(NH_4)_2SO_4$ Return of ammonium sulfate.

Heating ammonium diuranate precipitate, $(NH_4)_2U_2O_7$, produces U_3O_8 (yellowcake).

Yellowcake summary

Additional purification steps before leaching include:

- NaCl followed by heating to convert silver to silver chloride.
- Addition of NaNO₃ to oxidise UO₂ to UO₃.

Yellowcake is the starting point for UF₆ production:

- UF₆ is used to enrich content of ²³⁵U.
- UF₆ can be converted to UO₂ e.g. for AGR/CANDU (reactor fuel).

Bibliography 1

Sources/further reading

- Hurd W. Safford and A. Kuebel, J. Chem. Educ., (1943) 20
 (2), p88
- Frank Settle, case study: Nuclear Chemistry Uranium.
- Production http://www.chemcases.com
- J.M.W. Mackenzie, Henkel Ltd, Uranium Ore Yellow Cake seminar, Melbourne (1997.)

Bibliography 2

Sources/further reading

- World Nuclear Association http://www.world-nuclear.org
- Manufacture of Marketable Uranium Compounds http://www.lookchem.com
- Contents page image from the Uranium Information Center

Copyright information

© Royal Society of Chemistry

Registered charity number 207890

This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

To view a copy of the license, visit https://creativecommons.org