

English Chemistry Curriculum Map

May 2016

Redox in terms of electrons lost and gained	reagents disproportionation	
Electrolysis; common species at the cathode and anode, electrolysis of binary ionic compounds, competing reactions	Electrode potentials and their uses; the standard hydrogen electrode, the electrochemical series and the reactivity of metals	Electrochemical processes and potentials, polarography, electric properties of materials and solids
Chemical cells produce a potential difference until the reactants are used up	Electrode potentials; Structure of electrochemical cells	
Hydrogen fuel cells		
Carbon can form 4 covalent bonds, and this property allows it to form a vast array of natural and synthetic compounds		

Functional groups in organic compounds; (limited to alkanes, alkenes, alcohols and carboxylic acids) and	Homologous series (limited to alkanes, branched alkanes,	Reactions and structure of alkanes, alkenes and alkynes
alkanes, alkenes, alcohols and carboxylic acids) and		
structural formula of these	cycloakaries, raiogenoakaries, akeries, alconos, carboxylic acids, esters, aldehydes, ketones); draw using molecular, structural, displayed and skeletal forms	Reactions and structure of aromatic compounds; nucleophilic/electrophilic substitution, lithiation, ortho/para/ meta directing
Functionality can be used to predict reactions; simple reactions for the functional groups listed above (combustion, addition across a double bond, and oxidation of alcohols)	Types of organic reactions: addition, elimination and substitution (nucleophilic and electrophilic), oxidation and reduction, halogenation, hydrolysis, addition and condensation	Reactions and structure of carbonyl compounds; aldehydes, ketones, carboxylic acids, esters, acetals, ketals imines, enamines, enols, enolates
	polymerisation, combustion, transesterification, cracking/ reforming; link bond polarity to enthalpy and reactivity	Reactions and structure of alcohols, thiols, ethers, sulfonate esters, amines, alkyl halides, organometallics
	Organic synthesis; reactions of alkanes, alkenes, halogenoalkanes, alcohols, arenes, ketones, aldehydes, phenols, acyl chlorides, carboxylic acids, esters, amines, amino acids, amides, nitriles. Use the above reactions to work out synthetic routes to some of these species.	Synthetic techniques in organic and biological systems retro-synthesis, asymmetric synthesis, synthetic pathways and total synthesis
		Drug discovery and synthesis; design, targets, shape and synthesis, computational chemistry
Fractional distillation and cracking to make useful materials; carbon compounds as a finite feedstock and fuel	Alkanes as fuels; balance word equation for their combustion; use in cracking and reforming processes	
Principles of addition polymerisation, including monomers, repeat units and naturally occuring polymers	Polymerisation; Addition polymerisation and condensation polymerisation Uses of polymers and prevalence of polymers	
Condensation polymerisation; repeat units, importance of functional groups	in biological systems (DNA and proteins)	
	Nucleophiles and electrophiles	Mechanisms; Classification of substitution and elimination reactions (Sn1 and Sn2), reactive
	Mechanisms for radical, nucleophilic and electrophilic reactions; both addition and substitution	Advanced mechanisms; pericyclic, asymmetric, radical

	Rates: factors that affect frequency and energy of collisions; activation energy; interpretion of simple rate graphs	Define rate of reaction, rate constant and order of reaction	Mechanisms within rates; Precursor states, common mechanisms, transition state theory, chain reactions	
Catalysts	Catalysts; how they affect activation energy	Heterogeneous catal ysis; including examples of industrial use	Different types of catalysis (homo- and hetero-geneous) including enzyme catalysis; examples, applications, mechanisms	
			Solid state kinetics; Rates of absorption and desorption, surface active models	
		Determination of rate equations, orders of reaction and the rate limiting step by taking tangents from graphs; know qualitatively the effect of changes in temperature on the rate constant	Derivations of simple rate equations for complex reactions; rate equations and constants; calculating rates; steady state and equilibrium approximations	
	Interpret graphs of reaction vs rate; trade off between rate of production of a desired product and position of equilibrium; commercially used conditions relate to cost, raw materials, rate and control	Collision theory, Boltzmann distribution and activation energy, factors that lower the activation energy or increase the rate; in relation to enthalpy profile diagrams and bond strengths; and related to changes in the Boltzmann distribution	Kinetic theory of gases and related calculations of mean speeds and degrees of freedom; using kinetic theory to derive the Boltzmann distribution	
inergy changes in changes of state			Describing motion using degrees of freedom, matrices and determinants	
Definitions of exothermic and endothermic eactions	How bond breaking and making relates to exothermic and endothermic reactions; reaction profiles Relative bond energies as related to exothermic and endothermic reactions	Enthalpy of combustion, reaction, formation, solution and average bond enthalpies; calculate using Hess's cycle and DeltaH= mc DeltaT	Statistical thermodynamics; laws of thermodynamics (zero-th, first, second, third), statistical definitions of internal energy, entropy and chemical potential; calculations	
		Entropy; qualitative description of disorder in a system (solid, liquid, gas); calculate change in the entropy of a system	Deriving the Boltzmann entropy formula	
Principles of dynamic equilibrium		Feasibility using entropy and enthalpy	Electrochemistry and thermodynamics; lonic strength of	
			ions (activity), redox potentials	
	Fertilisers; Haber process, industrial production and lab synthesis of fertilisers	different factors (concentration, pressure and temperature) on the equilibrium constant in reversible reactions; using le	Applications; Thermodynamics of equilibrium and of organic reactions; thermodynamics of gases, liquids and	
	Predict how changing conditions leads to a changing equilibrium position	Chatelier's principle.	solids, and of interfaces; biological equilibrium, thermodynamics and reactions	

Representing elements and reactions using chemical symbols and formulae	Balancing simple chemical equations and ionic equations; use state symbols; calculate empirical formulae	Balancing ionic and molecular chemical equations	Units, conventions, nomenclature
	Write balanced half and full ionic equations		
	Explain why one reaction pathway is chosen over another; all factors considered		
	Quantitative interpretations of balanced equations, conservation of mass		
	Calculating per cent yield, atom economy and theoretical yield	Yields; atom economies and per cent yields; theoretical and actual	
	Moles and determining the stoichiometry of an equation; know relationship between volume, mass and molar concentration; and the relationship between molar volume, volume and mass in gases	Stoichiometric amounts from reacting masses, mole concentrations, volumes of gases, empirical and molecular formula	
		Definitions of relative atomic, formula, isotopic and molecular mass	

Titration calculations; including those with transition metals

				Analytical techniques; sampling, data treatment, statistics,
Mixing and dissolving are reversible reactions	Identification and definitions of impure (mixtures) and pure substances	Melting points and chromatography to define if a substance is pure	Chromatography; Liquid-gas, TLC, use for separating mixtures	quantitative analysis, quality assurance
Mixtures may be separated by filtering, sieving, evaporation	Impure substances can be separated by filtration, evaporation, distillation and chromatography	Separation techniques; filtration, crystallisation, advanced chromatography, simple and fractional distillation		Chromatography; TLC, HPLC, GC, LC, ion exchange chromatography, size exclusion chromatography, detectors
	Dissolving			The nature of electric and magnetic fields
		Analytical techniques; identification of common gases, flame tests, tests for aqueous ions, and a type of instrumental analysis, including interpreting an instrumental	Modern analytical techniques ; IR as causing bonds to vibrate, NMR and spin-spin coupling; be able to interpret spectra of both	Modern spectroscopy; NMR spectroscopy, IR spectroscopy, mass spec, UV-VIS spectroscopy; as applied to organic and inorganic species
result in tabular or chart form	Mass spectroscopy: calculate relative atomic mass how MS	Rotational and vibrational spectroscopy, Raman		

	spectroscopy, doing mole cala rotations and visitations
8	Electronic transitions and spectra; Atomic absorbance/ emission spec, ICP-MS and x-ray fluorescence; quantum transitions leading to spectroscopy; excited states; apply this knowledge to transition complexes and organic molecules
	Crystallography and diffraction; lasers

Classical te

Chemistry	
in the environ-	
ment and industry	

	Resources; recycling and life cycle assessments	Natural resources and pollution
mposition of the atmosphere; carbon cle; climate change	Composition and evolution of the atmosphere; evidence, causes, prevention and effects of climate change and pollutants	Atmospheric chemistry
e reactivity series and its application metal purification	Extraction and purification in the industrial processes; including electrolysis and biological methods	

All statements of content at KS1, KS2 and KS3 are taken from the Department for Education's Science Programmes of Study for these age groups, which form part of the English National Curriculum, licenced under an open Government licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) Crown copyright 2013 The statements of content for KS4 are taken from the Department for Education's Programme of Study for this age group, which forms part of the English National Curriculum, licenced under an open Government Licence v2.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) Crown copyright 2014 The statements of content for KS4 are taken from the Department for Education's subject content document for this age group, licenced under an Open Government Licence v3.0, Crown Copyright 2015 The statements of content at undergraduate level was compiled by an internal team at the Royal Society of Chemistry in 2014. The statements were taken from the module summaries of 10 universities, chosen to present a representative summary of what is covered in the first and second year of an undergraduate chemistry course in England.

Compiled by Joanna Furtado for the Royal Society of Chemistry in 2016 Checked and approved by David Shakespeare, Science Curriculum Consultant (http://www.square2learning.co.uk/)