

Northern Ireland Chemistry Curriculum Map

	BY NC SA	l					1
	Foundation phase (ages 4-6)	KS1 (age 6-8)	KS2 (age 8-11)	KS3 (Age 11-14)	KS4 (age 14-16)(higher content emboldened) Atomic structure; protons, neutrons and electrons, including relative charges and masses. Atomic	KS5 Atomic orbitals; define, shapes, classify the element as belonging to the s, p, d or f block from	Higher Education Year 1 The Bohr atom; wave-particle duality, Schrodinger wave equation, Quantum
				Atoms and elements	numbers and mass numbers of elements, and electronic configurations of atoms Definition of isotopes, and use of mass numbers	the electronic configuration; explain colour of compounds based on electron delocalisation Define atomic number; mass number; relative	numbers, s, p, d orbitals. Rules and principles governing filling of orbitals.
					and relative abundances to calculate relative atomic mass of isotopes. The difference between mixtures, elements and compounds, classification of substances as	atomic, relative isotopic, relative molecular and relative formula mass; isotopes	
					Basic structure of the periodic table, including the position of metals, non-metals, halogens, noble gases etc. Know how position in the periodic table		
					relates to electronic structure Historical development of atomic theory and the Periodic Table; contribution of Rutherford,		
					Chadwick, Newlands and Mendeleev.	Electronegativity; trends across periods and down groups; how differences in electronegativity cause bond polarity	
						lonisation energy; define and explain using shielding and stability; use to predict the group of	Trends in the periodic table.
Atomic structure and the periodic						an element and provide evidence for subshells Group 2; trends within groups, reactions, thermal stability and solubility of their sulphates, hydroxides	
table					Know some properties of group 1 and group 7, and know trends related to reactivity Relate reactivity to electronic configuration for Groups 1,7 and 0; write half equations for these reactions	and carbonates, uses Halogens; trends within group, colours, solubility, reaction with sodium hydroxide, sulphuric acid and	Chemistry of the s block and p block elements, to include halides and hydrides
						water; trends in oxidising ability Explain trend in melting point across period 3 in	
					Know about the specified properties, reactions, uses and societal impact of hydrogen, carbon (and carbon dioxide), nitrogen (and ammonia;	terms of structure and bonding.	
					carbon cloxide), nitrogen (and ammonia; particularly its use as a fertiliser), oxygen and sulfur (with reference to acid rain). Recall the environmental problems of nitrogen		
					fertilisers, including eutrophication; Describe the contact process for manufacture of sulphuric acid, including how rates are increased; Use of ammonia solution to identify metal lons, and		
					sulphuric acid to dehydrate sugar Reactivity series; know about displacement reaction of metals and their reactions with water,		
					steam and oxygen; relate rate of reaction to reactivity; relate this to metal extraction	Transition metals; characteristic behaviour, electronic configuration, oxidation numbers,	Co-ordination chemistry of the d block elements - trends and general properties,
Inorganic chemistry						changing oxidation states with particular reference to vanadium Formation of complex ions; ligand type, coordination number, relative strengths of ligands	extending to crystal field theory d-orbital splitting and thermodynamic stability.
			How changes in state are	1	Practical investigation of physical properties of	Ligand replacement reactions; colours, detection tests, electrochemistry, entropy	Ideal gases and Ideal solutions
Properties of matter	Investigate the way materials change through	Everyday materials can be heated or cooled to	brought about The effect of heating and cooling		water and changes of state.		Basic principles of chemistry in the solid state.
	physical force Substances can be heated or cooled to change them	change them	Changes of state in the water cycle	Properties of materials]		Changes of state: solid-liquid-vapour equilibria.
					Ionic bonding; know how an ion is formed, be able to draw dot and cross diagrams of ions understand that attraction of oppositely charged ions is the		Common theories of bonding, structures and representations.
				Elements, compounds	basis of ionic bonding Covalent bonding; know that this is sharing of atoms; draw dot and cross diagrams for specific	Bonding; Describe metallic, ionic, coordinate and covalent bonding in terms of electrostatic interactions; construct dot and cross diagrams for single, double, triple and coordinate bonds	Homonuclear and Heteronuclear Diatomic molecules, Polyatomic molecules Bonding of p block elements emphasising
					species; including specified multiple bonds Metallic bonding Relate types of bonding and subsequent structures		multiple bonding, VSEPR theory, octet rule, hypervalency, and hydrogen bonding.
Bonding					Relate types of bonding and subsequent structures to the properties of the materials formed, including ionic lattice, giant molecular, simple molecular and metallic.	Relate bonding to types of structure and the physical properties of these structures	Extended solid structures - Metals, semi- metals, ionic solids and covalent solids. Structure, energy and chemical bonding of solids.
					Van der waals forces	Intermolecular forces; including induces dipole, dipole-dipole and hydrogen bonding; and how this	Intermolecular forces
						Understand difference between polar bonds and polar molecules.	
						Know the octet rule and its limitations	
	Recognise the different materials used for different	Different materials have different properties and	The use of materials relates to their properties;	Structure, properties, uses of	Natural and synthetic materials, and their sources.	Shape of molecules; VSEPR to explain shapes of molecules and to predict angles	Salts, metals, ceramics, semiconductors
Materials	materials used for different purposes and identify their properties	different properties and are used for different uses	including electrical conductors and insulators	Structure, properties, uses of materials	Alloys and use of metals		and polymers
Entit			The origins of materials Some materials decay and		benefits The earth's surface; volcanos, earthquakes and		Applications in materials chemistry.
Earth science	Understand that some		Some materials decay and others form fossils		continental drift Acids and bases; acids are H+ and bases are OH-;		
	materials change if kept in different conditions		to make new materials	Chemical changes	difference between dilute and concentrated, how pH relates to acid strength Use of indicators (phenolphthalein, red and blue litmus paper and universal indicator paper) and	Bronsted-Lowry acid-base theory	Conjugate acids and bases
					comparison of validity and reliability of these indicators compared with a pH meter. Reactivity of acids; with metals, with bases, with	Define and caluculate Kw, Ka, pH, pKw and pKa	Define and calculate Kw, pH, pKw, pKa
					metal carbonates, with ammonia Differences between strong and weak acids and bases; know the reaction for neutralisation of	Define and caluculate Kw, Ka, pH, pKw and pKa Weak and strong acids in terms of dissociation	and pKb Strong and weak acids and bases. Importance of acidity and basicity in
					an acid Salts; colours of copper salts and general colours of Group 1 and 2 salts, and how to prepare salts	Understand techniques and procedures in acid- base titrations, including selecting the correct types	Poly-functional acids and their behavior in titrations.
Chemical changes;					using various methods	of indicator and pH curves Buffer solutions	Buffer solutions
redox and acids					Redox; as loss or gain of oxygen; relate to common reactions	Assigning oxidation states to elements in compounds.	
					Redox as loss or gain of electrons; relate to important industrial reactions (Haber, iron and aluminium production)	Redox in terms of electron transfer; understand oxidising and reducing agents; write ionic equations for redox reactions	
					Electrolysis; know about electrodes and electrolytes and movement of ions	Disproportionation, including reaction of chlorine with water	Electrochemistry, standard hydrogen electrode, standard electrode potential,
					Predict the properties of electrolysis of molten salts	Standard electrode potential, the hydrogen electrode, electrochemical cells and fuel cells	oxidation and reduction, electrochemical series and standard cell potential calculations. Nernst equation.
					Half equations for reactions occurring at electrodes		Applied electrochemistry; Galvani cells, fuel cells, electrolytic cells. Heterogeneous electron transfer kinetics, electro-catalysis, potentiometry, chronoamperometry and
						Know and name the structural and molecular formula up to 6 atoms, including geometric,	cyclic voltammetry. Structure and functional group chemistry of alkanes, alcohols, amines, alkyl halides, cyanides, ethers, alkenes, alkynes,
					Hydrocarbons are obtained from crude oi by fractional distillation and are widely used in industry	structural and stereo isomerism, for alkanes, alkenes, halogenoalkanes, alcohos, aldehydes, ketones, carboxylic acids, esters, acyl chlorides, amines and amides	aldehydes, ketones, carboxylic acids, acyl halides, esters and amides. Includes structural formulae, molecular formulae, isomerism, naming.
					Understand homologous series and functional groups as applied to a kanes and alkenes, (+alcohols and carboxylic acids; recognise	Relate reactivity (including acidity and basicity) and physical properties of organic compounds to their structure and bonding, including reference to	Reactivity and interconversion of listed functional groups to include bonding sequences, electron configuration, hybridization, geometry and
					carboxylic acids as weak acids)	relative strength of sigma and pi bonds. Recall the formation and reactions of alkanes,	electronegativity features of the functional groups, and mechanisms for reactions Recognise nucleophiles, electrophiles,
					Know about combustion of hydrocarbons, including environmental impact, including alcohols and	alkenes, halogenoalkanes, alcohols, aldehydes, ketones, carboxylic acids, esters, acyl chlorides, amines and amides, nitriles, aromatic compounds, amino acids and polymers; including oxidation,	bases; substitution, elimination and addition mechanisms. Fundamental principles of representing organic reaction mechanisms. Overview of important
					carboxylic acids	reduction, combustion, hydrolysis How organic compounds affect the environment (climate change, pollutants, CFCs, biodiesel)	mechanisms. Modern oxidation and reduction methods; Wittig reaction; hydroboration; epoxidation; Grignard reactions; aldol reaction;
Organic					Describe how monomers join together to make polymers in polymerisation; know about the recycling addition polymers	Polymers; condensation reactions and how	cycloaddition; Diels-alder reaction.
					Write equations for polymerisation; relate properties of polymers to their use Preparation of ethanol from sugars and use in	properties of polymers are related to their structure Proteins and enzymes.	Natural product chemistry - carbohydrates,
					alcohol; carboxylic acid as related to vinegar Preparation of ethanol from ethene and steam; oxidation of ethanol to ethanoic acid in air; and colour changes on oxidation	Fictures and Fizymes.	amino acids Stereochemistry, chirality and optical activity, including stere ochemistry of chemical reactions.
						Chemistry in medicine; know basic mechanisms of action of specified medicines, including calculating percentages of active ingredients	
						Mechanisms; electrophile, nucleophile, radicals; substitution and addition, fission and fusion Mechanisms for electrophilic substitution of	Aromatic chemistry of benzene derivatives. Heterocyclic chemistry. Electrophilic
			Ormere the second second second	1	Relate rates to collision theory and activation	benzene	aromatic substitution reactions, preparation and reactions of aromatic amines, diazonium salts and phenols Methods for measuring reaction rates.
			Some changes can be controlled.		energy Know how to measure and calculate rate using	Collision theory, Maxwell Boltzmann distribution. Experimental methods for studying rates. Calculating order of reaction and rate constant from rate equations and concentration-time graphs.	Arrhenius equation. Collision theory. Measurement of activation energy. Determining order; distinction between
					graphs Describe the effect of concentration, temperature,	Understand effect of temperature and activation energy on rate constant.	order and molecularity.
					particle size and catalyst on rate of chemical reaction	Rate determining step and the relationship between rate equation and mechanism Relate conditions in industrial processes to	Reaction kinetics in relation to reaction mechanism. Classes of reaction including gas phase, chain and branched chain, reactions of
Rates,					Relate factors that effect rate to increasing yield in the Haber process and the Contact	equilibrium vs rate compromise Equilibrium and factors that affect equilibrium position; calculate equilibrium constant and relate	solids, in solution, with catalysts. Homogeneous and heterogeneous equilibria, Kc and Kp calculations. Le
equil ibria and thermody nami cs					Process	Calculate equilibrium constants and concentrations	Chatelier's Principle. The Common Ion effect. Phase equilibria, including entropy, Raoult's Law and Henry's Law in Ideal 2 composed worktowe. Simple D T discreme
					Reversible reactions	Calculate equilibrium constants and concentrations including appropriate units	component systems. Simple P-T diagrams. Separation processes, one component and two component systems. Thermodynamics; internal energy and
					Exothermic and endothermic reactions Relate endothermic and exothermic reactions to	Standard enthaloy changes; of combustion, formation, neutralisation, lattice, dissolving, average bond; enthaloy level diagrams; Hess's law, Born Haber cycles, and q=mct	enthalpy; standard enthalpies of formation, reaction, solution and lattice energy. Heat capacities, temp dependence of enthalpy and equilibrium constants
					bond making and breaking	Entropy; definition and calculating standard entropy change	Bond dissociation and bond energy terms. Entropy and Gibbs free energy.
						Calculating Gibbs free energy	Latent heat - Kirchoff, Calpeyron and Clausius-Clapeyron equations
					Symbols and names of elements, chemical formulae of compounds, recall diatomic elements. Write word and balanced symbol equations	Use Roman numerals to indicate the oxidation states.	
					(including state symbols); understand conservation of mass Write ionic equations for simple reactions	state symbols. Write equations for first and successive ionisation energies.	
Chemical					Relative atomic mass, moles, empirical and molecular formula; percentage of an element in a compound	Define Avagadro's constant, the mole and molar mass Empirical and molecular formula	
Chemical calculatio ns					Experimental determination and calculation of empirical formulae of simple compounds Calculate the reacting masses of reactants and		
					Percentage of water of crystallisation	Calculate reacting masses of substances; and the moles of water of crystallisation	
					Theoretical yield and percentage yield Volume; concentration; mole; mass calculations	Percentage yield and atom economy Reacting gas volumes from calculations	
			Some substances dissolve		Titration calculations Mixtures can be separated using filtration,	Titration calculations	Calculation of pH, pKa, pKb; Kw and pKw; Titration calculation, buffer calculations
			Some substances dissolve and others do not	Mixtures	chromatography, evaporation, distillation and fractional distillation Paper chromatography and its use to analyse composition of mixtures.	Chromatography; paper, TLC, GLC; calculate percentage composition of a mixture, Rf values	Separation processes and the phase rule.
					Carrying out solubility experiments and drawing up a solubility curve. Calculating mass of precipitate on cooling a concentrated, hot solution.	Understand how solubility curves are drawn from experimental data.	
					Use bromine water to identify alkanes and alkenes Use of silica gel and calcium chloride as drying agents, terms dessicant and deliquescent.		
Chemical analysis and					Understand how elements and compounds may be detected and identified using modern instrumental	Proton NMR; chemical shifts, spin-spin splitting, integration curves Mass spec; use mass spectra to suggest formula for fragment ions	Proton NMR spectroscopy
preparati on					analysis (Mass Spec., HPLC) Tests for hydrogen gas, carbon dioxide, oxygen,	IR can be used to characterise organic groups by absorption arising from molecular vibrations Chemical tests for gases; iodine test with starch;	Infrared, Ultraviolet and visible spectroscopy
					ammonia Know about flame tests for cations, including colours, and solution test for anions Write ionic equations for the anionic tests, and	also for organic compounds Cation tests, including flame tests and adding sodium hydroxide Anion tests; including using barium chloride	
					understand that these are often precipitation reactions Testing for water using cobalt choride and copper	solution, acidified silver nitrate solution and testing for the carbonate ion with acid Titrations, inc procedures for preparing standard solutions. Volumetric analysis, including for back	
					(II)sulfate. Analyse data on mixtures and plan effective methods of separation.	solutions. Volumetric analysis, including for back titrations and redox titrations. Identify uncertainties in measurements of titrations, calculate concentrations and volumes from titrations; calculate molarity	
	н	ow we can reduce, reuse and recycle	Environmental benefits of recycling, reusing and reducing	The environment and human influences	Limestone quarrying, thermal decomposition, environmental impacts; Factors affecting the siting of an aluminium extraction plant.	Explain how a catalytic converter reduces the environmental impact of burning alkane fuels.	Appreciation of process economics and awareness of industrial/practical thermal efficiency, and an understanding of the complexities of scale-up design.
		man waste can negatively affect the environment	Renewable and non- renewable energy	Investigate the effects of pollution and specific measures to improve and protect the	Understand the importance of scale in calculations for industrial processes.		Complexities of scale-up design. Developing competency in chemical engineering through basic understanding of heat exchange systems, fluid flow, material and enthalpy balances, and
		en e	resources Some waste materials can be recycled and this is	to improve and protect the environment.	Understand the terms fossil fuel, renewable		and enthalpy balances, and thermodynamics, along with separation processes.
Chemistr y in the			be recycled and this is beneficial to the environment.		resource, non-renewable resource. Evaluate energy sources in terms of environmental and other grounds Composition of the earth's atmosphere and how it	Environmental issues associated with fuel cells.	
industry and environm ent					changed over time, climate change Rusting and barrier methods Know about extraction of aluminium and iron,		
					including environmental impact of the reactions and recycling of metals; factors to lower cost Hard and soft water; know what causes hardness and how to test for it; advantages and dispetience of bed water		
					disadvantages of hard water Fluoridation of public water supply; advantages and disadvantages		
					lon exchange to soften water; what a precipitation reaction is and how it relates to softening hard water		

	Е	а	rt	ł
~	-	0	-	-

Chemica
changes;
redox and

The content statements at Foundation Stage were taken from the 'World Around Us' Area of Learning, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2014 http://ccea.org.uk/curriculum/foundation_stage/areas_learning/ world_around_us The content statements for KS1 and KS2 were taken from the 'World Around Us' Area of Learning, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2014 http://ccea.org.uk/curriculum/key_stage_1_2/areas_learning/world_around_us The content statements at KS3 were taken from the 'Science and Technology' Area of Learning, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2014 http://ccea.org.uk/curriculum/key_stage_3/areas_learning/science_and_technology The content statements at KS4 were taken from the GCSE Chemistry Qualification, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2014 http://ccea.org.uk/clemistry/ The content statements at KS5 were taken from the GCE Chemistry Qualification, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2016 http://ccea.org.uk/chemistry/ The content statements at KS5 were taken from the GCE Chemistry Qualification, from the Council of Curriculum, Examinations and Assessment's website, Copyright CCEA 2016 http://ccea.org.uk/chemistry/ The content statements at udergraduate level were taken from the current Chemistry undergraduate course content at Queen's University, Belfast, the only university in Northern Ireland Compiled by Joanna Furtado for the Royal Society of Chemistry Approved and checked by Dr Stephanie Nelson, Northern Ireland Science Education Consultant