Scaffolding titration calculations

Education in Chemistry

November 2020
rsc.li/2GIzFLw
Titration calculations are difficult. You can reduce the cognitive load by careful scaffolding using the table method.

Table method example

A student titrated a $25.0 \mathrm{~cm}^{3}$ sample of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, with a $0.102 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of potassium hydroxide, $\mathrm{KOH} .23 .1 \mathrm{~cm}^{3}$ was the mean volume of potassium hydroxide required.

The equation for the reaction is $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.

1. Construct a table with the row titles shown below and the reagents used in the column headers.

	KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$		
Volume $\left(\mathrm{cm}^{3}\right)$		
Moles		
Mole ratio		

2. Find the numbers in the question and put them in the right place in the table. The gaps make it easy to know what needs calculating.

	KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	0.102	
Volume $\left(\mathrm{cm}^{3}\right)$	23.1	25.0
Moles		
Mole ratio	2	1

3. The calculation begins with the reagent for which we have both concentration and volume, allowing us to calculate the moles.

	KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration (mol/dm ${ }^{3}$)	0.102*	
Volume (cm^{3})	23.1*	25.0
Moles	2.36×10^{-3}	
Mole ratio	2	1

4. Now the column for KOH has been filled, we use the mole ratio to find the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

	KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration (mol/dm ${ }^{3}$)	0.102	
$\underline{\text { Volume (}} \mathrm{cm}^{3}$)	23.1	25.0
Moles	$2.36 \times 10^{-3} \div 2 \rightarrow$	1.18×10^{-3}
Mole ratio	$2 \div 2 \rightarrow$	1
$\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$		

$$
\frac{2.36 \times 10^{-3}}{2}=1.18 \times 10^{-3} \mathrm{~mol}
$$

5. The final step is to use the moles and volume to find the concentration.

	KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	0.102	0.047
Volume $\left(\mathrm{cm}^{3}\right)$	23.1	25.0^{*}
Moles	2.36×10^{-3}	$1.18 \times 10^{-3 *}$
Mole ratio	$2 \div 2-1$	1
		$\underline{C\left(\mathbf{H}_{2} \mathbf{S O}_{4}\right)}$

$$
n=\frac{c v}{1000} \rightarrow c=\frac{n}{v} \times 1000 \rightarrow \frac{1.18 \times 10^{-3}}{25} \times 1000=0.047 \mathrm{~mol} / \mathrm{dm}^{3}
$$

