

Scaffolding titration calculations

Education in Chemistry November 2020 rsc.li/2GlzFLw

Titration calculations are difficult. You can reduce the cognitive load by careful scaffolding using the table method.

Table method example

A student titrated a 25.0 cm³ sample of sulfuric acid, H₂SO₄, with a 0.102 mol/dm³ solution of potassium hydroxide, KOH. 23.1 cm³ was the mean volume of potassium hydroxide required.

The equation for the reaction is $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O_1$.

1. Construct a table with the row titles shown below and the reagents used in the column headers.

	КОН	H ₂ SO ₄
Concentration (mol/dm ³)		
Volume (cm ³)		
<u>M</u> oles		
Mole <u>r</u> atio		

2. Find the numbers in the question and put them in the right place in the table. The gaps make it easy to know what needs calculating.

	КОН	H ₂ SO ₄
<u>C</u>oncentration (mol/dm³)	0.102	
Volume (cm ³)	23.1	25.0
<u>M</u> oles		
Mole <u>r</u> atio	2	1

3. The calculation begins with the reagent for which we have both concentration and volume, allowing us to calculate the moles.

КОН	H ₂ SO ₄	
0.102*		
23.1*	25.0	
2.36 x 10 ⁻³		
2	1	
·	<u>n(KOH)</u>	
	KOH 0.102* 23.1* 2.36 x 10 ⁻³ 2	

 $m = \frac{cv}{1000} \rightarrow \frac{0.102}{1000} \times 23.1 = 2.36 \times 10^{-3} \text{mol}$

4. Now the column for KOH has been filled, we use the mole ratio to find the moles of H₂SO₄.

	КОН	H ₂ SO ₄
Concentration (mol/dm ³)	0.102	
Volume (cm ³)	23.1	25.0
<u>M</u> oles	2.36 x 10 ⁻³ ; 2 →	1.18 x 10 ⁻³
Mole <u>r</u> atio	2 ÷2 →	1

<u>n(H₂SO₄)</u> ↓

$$\frac{2.36 \times 10^{-3}}{2} = 1.18 \times 10^{-3} \text{mol}$$

5. The final step is to use the moles and volume to find the concentration.

	KOH	H ₂ SO ₄
Concentration (mol/dm ³)	0.102	0.047
Volume (cm ³)	23.1	25.0*
<u>M</u> oles	2.36 x 10 ⁻³	1.18 x 10 ^{-3*}
Mole <u>r</u> atio	2 ÷2—>	1

◆ <u>C(H₂SO₄)</u>

 $\frac{C(H_2SO_4)}{n = \frac{cv}{1000}} \Rightarrow c = \frac{n}{v} \ge 1000 \Rightarrow \frac{1.18 \ge 10^{-3}}{25} \ge 1000 = 0.047 \text{ mol/dm}^3$