In context

Subject area: Organic chemistry
Level: 14-16 years (Higher)
Topic: Alcohols

The 'whoosh' bottle experiment

This experiment shows the power of the reaction that can take place when an alcohol burns.

Here is a method used by a teacher to show this experiment:

- Use an empty polycarbonate water bottle of volume $20 \mathrm{dm}^{3}$.
- Add approximately $10 \mathrm{~cm}^{3}$ of methanol into the bottle.
- Swirl the methanol inside the bottle.
- Then decant the excess methanol from the bottle.
- Place a rubber stopper or bung into the top of the bottle.
- Connect a wooden splint to the end of a metre rule, and light the end of the splint with a match.

- Carefully place the lighted splint (now at arm's length) above the stopper on the bottle, and remove the stopper with the other hand.
- A spectacular reaction should now take place. Watch the reaction at https://youtu.be/yl89heCsBpQ.

Answer the questions below.

1. Explain why the methanol is swirled within the bottle before it is ignited.
2. Define the following terms used in this method:
a) Decant
b) Excess
3. State the molecular formula of methanol.
4. Draw the structure of a methanol molecule in which all bonds are shown.
5. In the reaction in the bottle, methanol is burning to form carbon dioxide and water. Write a chemical equation to show this reaction.
6. Explain why this reaction produces a 'whoosh' when it takes place within a bottle.
7. The internal volume of the bottle was $20 \mathrm{dm}^{3}$.

Write this volume in the following units:
a) cm^{3}
b) m^{3}
8. The mass of methanol vapour remaining in the bottle before ignition was 5.2 g .

Calculate the concentration of the methanol vapour in:
a) $\mathrm{g} / \mathrm{dm}^{3}$
b) $\mathrm{mol} / \mathrm{dm}^{3}$, and writing this answer in standard form.

RAM data: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$.
c) Calculate the mass of carbon dioxide formed when 5.2 g of methanol vapour is ignited.

You will need to use your chemical equation from question 5 to help you.
Show your working clearly.
9. After the reaction in a different bottle had taken place, it was allowed to cool.

A colourless liquid, A , is observed at the base of the bottle.
a) Name liquid A.
b) If the volume of liquid A was $4.50 \mathrm{~cm}^{3}$, calculate the mass of methanol that was burnt in the bottle.

Assume that the density of liquid $A=1 \mathrm{~g} / \mathrm{cm}^{3}$.

