gridlOCKS - can you unlock the grid?

$\mathrm{pH}, \mathrm{H}^{+}$and pOH values

pH values can be calculated from $\left[\mathrm{H}^{+}\right]$and conversely $\left[\mathrm{H}^{+}\right]$can be calculated from pH values using the equations below. But before you dive for your calculator it is worth knowing how reasonably convenient numbers convert so you get a 'feel' for the type of answer you are expecting. Before you answer the gridlocks below fill in the table of pH values - see how many you can do without using the calculator. All pH s here to 1 d.p. $(\log 2 \approx 0.3$ and $\log 5 \approx 0.7)$.

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$	$\mathrm{pOH}=\log _{10}\left[\mathrm{OH}^{-}\right]$	$\mathrm{pOH}+\mathrm{pH}=14=\mathrm{p} K_{\mathrm{w}}$	
$\left[\mathrm{H}^{+}\right]$	pH	pOH	[$\mathrm{H}_{2} \mathrm{SO}_{4}$]	$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$
2	-0.3	14.3	1	N/A
0.5		13.7	0.25	N/A
0.2	0.7			N/A
	4.3	9.7		N/A
1×10^{-7}	7	7	0	0
5×10^{-11}	10.3		N/A	1×10^{-4}
2×10^{-12}	11.7		N/A	
5×10^{-15}	14.3	-0.3	N/A	1

Gridlock 1

Each row, column and 2×2 box contains information about the first four $\left[\mathrm{H}^{+}\right]$listed above. Use your problem solving skills and the answers in the table above to fill in the blank boxes.

$\left[\mathrm{H}^{+}\right]$			
0.5			
		4.3	
		13	
pOH			

gridlocks - can you unlock the grid?

Gridlock 2

Each row, column and 2×2 box contains the last four $\left[\mathrm{H}^{+}\right]$listed above.

$\left[\mathrm{H}^{+}\right]$								14.3

Gridlock 3

Work out the pH values in this gridlock contains and then solve it.

pH		[H2SO4]	
14.3		0.1	

gridlOCKS - can you unlock the grid?

$\mathrm{pH}, \mathrm{H}^{+}$and pOH values - answers

pH values can be calculated from $\left[\mathrm{H}^{+}\right]$and conversely $\left[\mathrm{H}^{+}\right]$can be calculated from pH values using the equations below. But before you dive for your calculator it is worth knowing how reasonably convenient numbers convert so you get a 'feel' for the type of answer you are expecting. Before you answer the gridlocks below fill in the table of pH values - see how many you can do without using the calculator. All pH s here to 1 d.p. $(\log 2 \approx 0.3$ and $\log 5 \approx 0.7)$.

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$	$\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$	$\mathrm{pOH}+\mathrm{pH}=14=\mathrm{p} K_{\text {w }}$	
$\left[\mathrm{H}^{+}\right]$	pH	pOH	[$\mathrm{H}_{2} \mathrm{SO}_{4}$]	[$\left.\mathrm{Ba}(\mathrm{OH})_{2}\right]$
2	-0.3	14.3	1	N/A
0.5	0.3	13.7	0.25	N/A
0.2	0.7	13.3	0.1	N/A
5×10^{-5}	4.3	9.7	2.5×10^{-5}	N/A
1×10^{-7}	7	7	0	0
5×10^{-11}	10.3	3.7	N/A	1×10^{-4}
2×10^{-12}	11.7	2.3	N/A	2.5×10^{-3}
5×10^{-15}	14.3	-0.3	N/A	1

Gridlock 1 - answers

Each row, column and 2×2 box contains information about the first four $\left[\mathrm{H}^{+}\right]$listed above. Use your problem solving skills and the answers in the table above to fill in the blank boxes.

$\left[\mathrm{H}^{+}\right]$		pH	
0.5	5×10^{-5}	0.7	-0.3
0.2	2	4.3	0.3
9.7	13.7	1	0.1
14.3	13.3	0.25	2.5×10^{-5}
pOH		[$\mathrm{H}_{2} \mathrm{SO}_{4}$]	

gridlocks - can you unlock the grid?

Gridlock 2 - answers
Each row, column and 2×2 box contains the last four $\left[\mathrm{H}^{+}\right]$listed above.

$\left[\mathrm{H}^{+}\right]$		pH	
2×10^{-12}	1×10^{-7}	10.3	14.3
5×10^{-15}	5×10^{-11}	11.7	7
7	2.3	1	1×10^{-4}
3.7	-0.3	0	2.5×10^{-3}
pOH		[$\left.\mathrm{Ba}(\mathrm{OH})_{2}\right]$	

Gridlock 3 - answers

Work out the pH values in this gridlock contains and then solve it.

pH		[H2SO4]	
14.3	7	0.1	1
0.7	-0.3	0	
0	1	14.3	$\mathrm{~N} / \mathrm{A}$
N / A			

