

Ammonium nitrate explosions: answers

Education in Chemistry November 2020 rsc.li/2TdpNqC

The decomposition of ammonium nitrate at temperatures above 260°C leads to a 'runaway' explosive reaction. Many aspects of this 'runaway' reaction can be explained by concepts such as enthalpy change and by taking a closer look at the structure and bonding of ammonium nitrate.

Task 1 – Structure and bonding in ammonium nitrate

The structure and geometry of ammonium nitrate are shown in the diagrams below.

1. Ammonium nitrate is composed of two polyatomic ions – identify the different type(s) of bonding within its structure.

Covalent bonding within NH_3 molecule Coordinate bond between N and H⁺ ion Ionic bonding between NH_4^+ and NO_3^- in the lattice

2. Using the VSEPR theory and the diagrams above, state and explain the geometries of the NH₄⁺ and NO₃⁻ ions shown.

 NH_{4^+} has four bond pairs which repel equally to give a tetrahedral geometry and a bond angle of 109.5°. NO_{3^-} has three double bond pairs which repel equally to give a trigonal planar geometry and a bond angle of 120°.

Task 2 – Decomposition or explosion?

Pure ammonium nitrate does not explode easily and can be handled safely. It decomposes at 230°C producing nitrous oxide gas (N₂O) and water vapour.

3. Give a balanced equation for the decomposition reaction.

$NH_4NO_3\left(s\right) \rightarrow N_2O(g) \ + \ 2H_2O(g)$

Above 260°C, if confined and when contaminated, ammonium nitrate will explode forming toxic gases such as NO₂, responsible for the 'orange brown fireball' described in the article.

The following equation represents one of the reactions contributing to the explosion:

 $4NH_4NO_3(s) \rightarrow 3N_2(g) + 2NO_2(g) + 8H_2O(g)$

4. Given that the molar gas volume is 24.5 dm³ at 298K and 1atm calculate the total volume of gas produced from 80 kg of NH₄NO₃(s) under these conditions.

```
4 moles NH<sub>4</sub>NO<sub>3</sub>(s) \rightarrow 13 moles of gas

1 mole NH<sub>4</sub>NO<sub>3</sub>(s) \rightarrow 13/4 moles of gas

80kg NH<sub>4</sub>NO<sub>3</sub>(s) = 1000 moles NH<sub>4</sub>NO<sub>3</sub>(s) \rightarrow 3250 moles of gas

Volume of gas = 3250 x 24.5 dm<sup>3</sup> = 79,625 dm<sup>3</sup>
```

 Use your value to calculate the total volume of gas at the same pressure and 300°C. Scale this up to calculate the vast volume of gas produced from 2750 tonnes of NH₄NO₃(s) in the Beirut explosion.

80kg NH₄NO₃(s) \rightarrow 79,625 dm³ of gas at 298 K V₁/T₁ = V₂/T₂; 300°C = 573 K 79,625/298 = V₂/573; V₂ = 153,104.4 dm³ 2750 tonnes \rightarrow 153,104.4/80 x 2750 x 1000 dm³ of gas = 5,262,965.3x10³ dm³ of gas

Task 3 – Calculating the enthalpy of reaction, ΔH_R , and using kinetic theory to explain why this is a 'runaway' reaction

The data below will be used in Tasks 3 - 5

Compound	ΔH ⁰ f / KJmol ⁻¹	S ⁰ /JK ⁻¹ mol ⁻¹
NH4NO3 (s)	-365.6	+15.1
N ₂ (g)	0	+153.3
NO ₂ (g)	+33.2	+240.1
H ₂ O(g)	-241.8	+188.8

Once decomposition begins a 'runaway' reaction occurs. In a runaway reaction an exothermic reaction goes out of control. The heat evolved raises the temperature of the reacting mixture leading to an increase in reaction rate, which causes a further increase in temperature and a further increase in reaction rate until an explosion occurs.

6. Use the standard enthalpies of formation, ΔH⁰f, given in KJmol⁻¹ to calculate the enthalpy change for the reaction and confirm that it is exothermic

 $4NH_4NO_3(s) \rightarrow 3N_2(g) + 2NO_2(g) + 8H_2O(g)$

 ΔH_R = sum of ($\Delta H^{0}f$ products) - sum of ($\Delta H^{0}f$ reactants) ΔH_R = -1934.4 + 66.4. + 1462.4 = - 405.6 KJmol⁻¹

7. Select which of the energy profile templates below (A or B) correctly represents the enthalpy change you have calculated and label it showing reactants, products, ΔH_R and E_{act} .

Energy profile diagram B, showing reactant, NH_4NO_3 on LHS and products $3N_2(g)$, $2NO_2(g)$ and $8H_2O(g)$ on RHS. E_{act} shown as the difference in energy between reactants and peak of profile.

8. Use kinetic theory to explain why an increase in temperature causes an increase in reaction rate.

For a successful collision molecules need $E > or = E_{act}$. As temperature increases kinetic energy of molecules increases and more molecules have $E > or = E_{act}$ resulting in more successful collisions per unit time.

Task 4 – Calculating the entropy change, ΔS , for the reaction

The changes in state during the decomposition reaction below suggest there will be a significant increase in the disorder, entropy, for the reaction – ie ΔS will be highly positive.

9. Use the standard entropies, S⁰, given in JK⁻¹mol⁻¹ to confirm this is the case.

 $4NH_4NO_3(s) \rightarrow 3N_2(g) + 2NO_2(g) + 8H_2O(g)$

 ΔS = sum of (S⁰ of products) - sum of (S⁰ of reactants) = 459.9 + 1510.4 + 480.2 - 60.4 = +2390.1 JK⁻¹mol⁻¹

Task 5 – Assessing the spontaneity of the reaction

To assess the spontaneity of a reaction both enthalpy and entropy changes need to be considered together in Gibb's Equation.

Using your enthalpy and entropy changes from Tasks 3 and 4 and Gibbs equation below:

10. Comment on whether the decomposition reaction is likely to be spontaneous at all temperatures.

Since $\Delta H = -ve$ and $\Delta S = +ve$, both the terms ΔH and T ΔS will be -ve at all temperatures above 0K; therefore $\Delta G = -ve$ indicating a spontaneous reaction.

11. Using temperatures of 300°C and 500°C in a model calculation comment on whether the decomposition is likely to become more favourable as the temperature increases.

At 300K: $\Delta G = -405.6 - 573 \times (2390.1/1000) = -1775.1 \text{KJmol}^{-1}$ At 500K: $\Delta G = -405.6 - 773 \times (2390.1/1000) = -2253.1 \text{KJmol}^{-1}$ ΔG becomes more -ve as T increases; therefore decomposition reaction becomes more favourable.

Reminders about Gibbs equation:

ΔG = **Δ**H -T**Δ**S

For a reaction to be spontaneous ΔG must be negative. Take care with units! ΔG and ΔH in KJmol⁻¹, ΔS in JK⁻¹mol⁻¹ and T is in K.