Linear Cost Equation Example

A chemical company operates a plant to produce ethylbenzene from benzene and ethene using a Friedel-Crafts alkylation process. A summary of information about the manufacturing plant is provided below:

Item	Value
Labour costs	$£ 500,000 \mathrm{a}^{-1}$
Benzene purchase price	$£ 600 \mathrm{t}^{-1}$
Benzene usage	$0.75 \mathrm{t} \mathrm{t}^{-1}$ (of ethylbenzene produced)
Process water	$£ 10,000 \mathrm{a}^{-1}$
Management costs	$£ 100,000 \mathrm{a}^{-1}$
Marketing costs	$£ 200,000 \mathrm{a}^{-1}$
Plant capacity	$100,000 \mathrm{t} \mathrm{a}^{-1}$
Maintenance costs	$£ 50,000 \mathrm{a}^{-1}$
Ethene purchase price	$£ 450 \mathrm{t}^{-1}$
Ethene usage	$0.28 \mathrm{t} \mathrm{t}^{-1}($ of ethylbenzene produced)
Catalyst costs	$£ 100,000 \mathrm{a}^{-1}$
R\&D costs	$£ 100,000 \mathrm{a}^{-1}$
Ethylbenzene selling price	$£ 1600 \mathrm{t}^{-1}$
Process energy costs	$£ 84,000 \mathrm{a}^{-1}$
Depreciation of plant capital	$£ 500,000 \mathrm{a}^{-1}$
Central Administration costs	$£ 50,000 \mathrm{a}^{-1}$

Answer the following questions:
(a) Categorise the cost items as either fixed or variable costs. Comment on any assumptions you may make.
(b) Determine the values in the empty table below:

Quantity manufactured $(\boldsymbol{x})\left(\mathbf{t ~ a}^{-1}\right)$	Total Fixed costs (F) $\left(£ \mathbf{a}^{-1}\right)$	Fixed costs per tonne of ethylbenzene $(f)\left(£ \mathrm{t}^{-1}\right)$	Total Variable costs (V) $\left(£ \mathbf{a}^{-1}\right)$	Variable costs per tonne of ethylbenzene $(v)\left(£ \mathrm{t}^{-1}\right)$
0				
999				
1000				
1999				
2000				
2999				
3000				
3999				
4000				
4999				
5000				
5999				
6000				
6999				

7000				
7999				
8000				
8999				
9000				
9999				
10000				

(c) Draw a graph to show the variation of average fixed costs per tonne (f) and average variable costs per tonne (v) with the quantity (x) of ethylbenzene produced. Comment on your graphs.
(d) Prepare a Total Cost equation, which will show the variation of total costs (C) with quantity (x) of ethylbenzene produced.
(e) Prepare an Average Cost equation, which will show the variation of average cost (AC) with quantity (x) of ethylbenzene produced.
(f) Determine the numerical values in the empty table below.

Quantity manufactured $(\boldsymbol{x})\left(\mathbf{t ~ a}^{-1}\right)$	Total cost (C)	Total revenue (R)	Average cost (AC)	Marginal cost (MC)	Marginal revenue (MR)	Profit (P)
0						
999						
1000						
1999						
2000						
2999						
3000						
3999						
4000						
4999						
5000						
5999						
6000						
6999						
7000						
7999						
8000						
9000						
9999						
10000						

(g) Prepare a marginal cost (MC) equation and a marginal revenue (MR) equation
(h) Draw a graph to show the variation of total fixed costs (F), total variable costs (V) and total costs (C) with quantity (\mathbf{x}) manufactured. Comment on your graphs.
(i) Draw a graph to show the variation of marginal cost (MC), average costs (AC), marginal revenue (MR) and profit (P) with quantity (x) manufactured. Comment on your graphs.
(j) How much ethylbenzene should be manufactured in order to maximise the profit (P) for the company? What is the minimum amount of ethylbenzene that should be manufactured in order to make a profit for the company?

