Demand and Supply Curves Calculation Example

(Note: you will also need information from the cost equations and perfect market sections to answer this question)

In all, there are 100 suppliers who compete for sales of a chemical product. All the firms have a capacity of 15 t week ${ }^{-1}$ and have identical cost structures for production. For each, the cost of production of a quantity \boldsymbol{x} can be represented by the equation:

$$
C=1000+350 x+10 x^{2}
$$

where \boldsymbol{C} is the total cost $\left(£\right.$ week $\left.^{-1}\right)$ and \boldsymbol{x} is the output (t week ${ }^{-1}$)
Collectively, the total production of all the firms is $\boldsymbol{q}\left(\mathrm{t} \mathrm{week}^{-1}\right)$ and the whole market demand curve can be represented by the equation:

$$
p=1100-0.4 q
$$

where \boldsymbol{p} is the market price $\left(£ \mathrm{t}^{-1}\right)$
(a) For one individual company, calculate the output at which the average cost ($\boldsymbol{A C}$) is minimum, the minimum average cost and the marginal cost (MC) at the same output.
(b) For one individual company, calculate the quantity of production if the market price were:
(i) $£ 650 \mathrm{t}^{-1}$
(ii) $£ 600 \mathrm{t}^{-1}$
(iii) $£ 550 \mathrm{t}^{-1}$

Hence derive an equation for the supply curve applicable to this one company.
(c) Now derive the equation for the whole market supply curve. [Note: this is an aggregation of the individual supply curves].
(d) Assuming a perfect market calculate the equilibrium market quantity and the equilibrium market price.
(e) For one individual company operating at the equilibrium conditions, calculate the total revenue, the total cost and the total profit.

