

From Education in Chemistry rsc.li/2XKwB1g

Detect, recall, solve

- Detect the command words and information in the question (highlight them)
- Recall the relevant information you know
 - Solve by linking the information in the question with your knowledge (use logical bullet points)

Q1 Try it yourself

1.Detect
2. Recall
3. Solve

10

The Earth's early atmosphere was different to Earth's atmosphere today.

Scientists think that the Earth's early atmosphere was like the atmosphere found on Venus today.

Table 2 shows the amounts of carbon dioxide and oxygen in the atmospheres of Venus and Earth today.

Table 2

Gas	Percentage (%) in Venus' atmosphere today	Percentage (%) in Earth's atmosphere today
Carbon dioxide	96.50	0.04
Oxygen	0.00	20.95

0 3.4

The percentages of carbon dioxide and oxygen have changed from Earth's early atmosphere to Earth's atmosphere today.

Explain the processes that led to these changes.

[6 marks]

outside the

Detect the **command words**, and information in the question (highlight)

Recall: The carbon cycle. What processes change the amount of CO₂ in the atmosphere?

Solve: Link the information and your knowledge. Use 'because' to link cause and effect. Eg. This difference exists because this process occurred.

(logical, bullet points)

The Earth's early atmosphere was different to Earth's atmosphere today.

Scientists think that the Earth's early atmosphere was like the atmosphere found on Venus today.

outside the

Table 2 shows the amounts of carbon dioxide and oxygen in the atmospheres of Venus and Earth today.

Table 2

Gas	Percentage (%) in Venus' atmosphere today	Percentage (%) in Earth's atmosphere today
Carbon dioxide	96.50	0.04
Oxygen	0.00	20.95

The percentages of carbon dioxide and oxygen have changed from Earth's early

the carbon cycle.

		atmosphere to Earth's atmosphere today.	
higl	ect and nlight the nmand ds.	Explain the processes that led to these changes. [6	marks
diffe	ect the erences		
Venus' and Earth's atmosphere.			
_			
Recall the processes in the carbon	cesses in carbon		
сус	ie		
the	ve: Link changes		
in the amount of CO ₂ and O ₂ to the			
pro	cesses in		

Mark scheme

Question	Answers	Mark	AO / Spec. Ref.
03.4	Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.	5–6	AO2
	Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3–4	AO1
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1–2	AO1
	No relevant content	0	
	Indicative content changes		4.9.1.2 4.9.1.3 4.9.1.4
	 carbon dioxide has decreased oxygen has increased processes volcanic activity released water vapour the water vapour condensed to form oceans carbon dioxide dissolved in oceans 		
	 carbon dioxide dissolved in oceans carbon algae produce sediments carbon locked up in sedimentary rocks algae and plants evolved / appeared algae / plants absorbed carbon dioxide by photosynthesis which also released oxygen carbon locked up in fossil fuels 		

Q2 Try it yourself

Detect the command words, and information in the question (highlight)

Recall: The equipment needed, the processes and the safety required.

Solve: Write the steps in a logical sequence. You may use bullet points or a numbered list.

You may use diagrams if you wish.

(logical, bullet points)

	0 1.3	Describe a method to make pure, dry crystals of magnesium sulfate from a moxide and a dilute acid.	
highl	ct and ight the mand words.		6 marks
Whice and c	ch metal oxide dilute acid will		
	need to use?		
	will need.		
	esses need to		
	en to form dry crystals?		
a log orde	instructions in ical r, you may bullet points		
user	odnet points		

Mark scheme

Question	Answers	Mark	AO / Spec. Ref.
01.3	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	AO1 4.4.2.3
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	3–4	
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content	0	
	Indicative content use magnesium oxide and sulfuric acid add sulfuric acid to a beaker warm sulfuric acid add magnesium oxide stir continue adding until magnesium oxide is in excess filter using a filter paper and funnel to remove excess magnesium oxide heat solution in an evaporating basin to crystallisation point leave to crystallise pat dry with filter paper credit may be given for diagrams		

