

$45^{\text {th }}$ INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round 1-2013

MARK SCHEME

Question	1	2	3	4	5	Total
Mark	9	13	9	15	17	63

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

For answers with missing or incorrect units, penalise 1 mark for the first occurrence in each question. Do not penalise for subsequent occurrences in the same question.

Qu	tio						
(a)		$\begin{aligned} & 3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{I}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \\ & {[\text { Ignore state symbols] }} \end{aligned}$					
(b)		$\begin{aligned} & \Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=\left((2 \times 46.1)+187.8-(2 \times 285.8)+\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)\right) \mathrm{kJ} \mathrm{~mol}^{-1}=-241.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)=50.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \text { Decomposition enthalpy }=-50.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ [Positive answers of correct magnitude do not score credit.]					1
(c)	(i)	 Ox. state of N Ox. state of O [No partial credit given]	$\begin{aligned} & \hline \hline \mathrm{N}_{2} \mathrm{H}_{4} \\ & -2 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{H}_{2} \mathrm{O}_{2} \\ & \\ & \hline-1 \end{aligned}$	N 0 0	$\begin{gathered} \hline \hline \mathrm{H}_{2} \mathrm{O} \\ \hline-2 \\ \hline \end{gathered}$	1

	(ii)	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ [Ignore state symbols]	1
	(iii)	$\begin{aligned} \text { Amount of hydrazine } & =225000 \mathrm{~cm}^{3} \times 1.021 \mathrm{~g} \mathrm{~cm}^{-3} / 32.052 \mathrm{~g} \mathrm{~mol}^{-1} \\ & =7167 \mathrm{~mol} \\ \text { Amount of methanol } & =862000 \mathrm{~cm}^{3} \times 0.7918 \mathrm{~g} \mathrm{~cm}^{-3} / 32.042 \mathrm{~g} \mathrm{~mol}^{-1} \\ & =21301 \mathrm{~mol} \end{aligned}$ [Both amounts needed for one mark] $\begin{aligned} \text { Heat energy evolved from hydrazine } & =7167 \mathrm{~mol} \times 622.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & =4.459 \times 10^{6} \mathrm{~kJ} \end{aligned}$ $\text { Heat energy evolved from methanol }=21301 \mathrm{~mol} \times 726.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $=15.465 \times 10^{6} \mathrm{~kJ}$ Total heat energy evolved from oxidation of rocket fuel $=19.9 \times 10^{6} \mathrm{~kJ}$ [Correct answer scores both marks. Accept $-19.9 \times 10^{6} \mathrm{~kJ}$]	1 1
(d)	(i)	N_{2} and $\mathrm{H}_{2} \mathrm{O}$ [Half a mark each. Accept 'nitrogen and water'.]	1
	(ii)	NO_{2} [Accept 'nitrogen dioxide'.]	1
(e)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{NH}$ This is known in the trade as UDMH (unsymmetrical dimethylhydrazine)	1
Total			9

Question 2

(a)	Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=0.0122 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=1.22 \times 10^{-3} \mathrm{~mol}$ Amount of $\mathrm{Cu}=1.22 \times 10^{-2} \mathrm{~mol}$ Mass of $\mathrm{Cu}=1.22 \times 10^{-2} \mathrm{~mol} \times 63.55 \mathrm{~g} \mathrm{~mol}{ }^{-1}=0.775 \mathrm{~g}$ Percentage of Cu by mass $=100 \% \times 0.775 \mathrm{~g} / 0.800 \mathrm{~g}=96.9 \%$ (b) Volume of medal $=\pi r^{2} \mathrm{~h}=\pi \times(4.25 \mathrm{~cm})^{2} \times 0.7 \mathrm{~cm}=39.72 \mathrm{~cm}^{3}$ Density of medal $=\left(0.925 \times 10.49 \mathrm{~g} \mathrm{~cm}^{-3}\right)+\left(0.075 \times 8.96 \mathrm{~g} \mathrm{~cm}^{-3}\right)=10.38 \mathrm{~g} \mathrm{~cm}^{-3}$ Mass of medal $=39.72 \mathrm{~cm}^{3} \times 10.38 \mathrm{~g} \mathrm{~cm}^{-3}=412 \mathrm{~g}$ [Correct answer scores both marks.]	$\mathbf{1}$

\begin{tabular}{|c|c|c|c|}
\hline (c) \& \& \begin{tabular}{l}
```
Mass of \(\mathrm{Au}=0.067 \mathrm{~g}\)
Amount of \(\mathrm{Ag}=\) amount of \(\mathrm{AgCl}=6.144 \mathrm{~g} /(107.87+35.45) \mathrm{g} \mathrm{mol}^{-1}=4.287 \times 10^{-2} \mathrm{~mol}\)
Mass of \(\mathrm{Ag}=4.287 \times 10^{-2} \mathrm{~mol} \times 107.87 \mathrm{~g} \mathrm{~mol}^{-1}=4.624 \mathrm{~g}\)
Mass of \(\mathrm{Cu}=5.000 \mathrm{~g}-0.067 \mathrm{~g}-4.624 \mathrm{~g}=0.309 \mathrm{~g}\)
Percentage of Au by mass \(=100 \% \times 0.067 \mathrm{~g} / 5.000 \mathrm{~g}=1.34 \%\)
Percentage of Ag by mass \(=100 \% \times 4.624 \mathrm{~g} / 5.000 \mathrm{~g}=92.5 \%\)
Percentage of Cu by mass \(=100 \% \times 0.309 \mathrm{~g} / 5.000 \mathrm{~g}=6.18 \%\)
``` \\
[One mark awarded for each correct percentage. Allow error carried forward in the copper percentage. Allow minor differences due to rounding.]
\end{tabular} \& 1
1
1 \\
\hline (d) \& \& \begin{tabular}{l}
\(\mathrm{d}=\) tyre diameter \(=0.023 \mathrm{~m}\) \\
\(r=(\) wheel diameter \(/ 2)-(\) tyre diameter \(/ 2)=0.33 m-0.0115 m\) \(=0.3185 \mathrm{~m}\) \\
[One mark for correct value of r]
\[
\begin{aligned}
\text { volume } \& =\pi^{2} \times 0.3185 \mathrm{~m} \times(0.023 \mathrm{~m})^{2} / 2 \\
\& =8.314 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
\] \\
[Correct answer scores both marks.]
\end{tabular} \& 1

1

\hline (e) \& (i) \& | $\begin{aligned} & \mathrm{p}=8.27 \times 10^{5} \mathrm{~Pa} ; \mathrm{V}=8.31 \times 10^{-4} \mathrm{~m}^{3} ; \mathrm{T}=298 \mathrm{~K} \\ & \mathrm{n}=\mathrm{pV} / \mathrm{RT} \end{aligned}$ |
| :--- |
| [One mark for correct method.] $\begin{aligned} & \mathrm{n}=\left(8.27 \times 10^{5} \mathrm{~Pa} \times 8.31 \times 10^{-4} \mathrm{~m}^{3}\right) /\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}\right) \\ & \mathrm{n}=0.278 \mathrm{~mol} \end{aligned}$ |
| [Correct answer scores both marks; $\mathrm{n}=0.334 \mathrm{~mol}$ if value of $0.001 \mathrm{~m}^{3}$ used for volume.] | \& 1

1

\hline \& (ii) \& | $\begin{aligned} & \mathrm{N}_{2}=28.02 \mathrm{~g} \mathrm{~mol}^{-1} ; \mathrm{O}_{2}=32.00 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { mass in one tyre }=\left(\left(0.8 \times 28.02 \mathrm{~g} \mathrm{~mol}^{-1}\right)+\left(0.2 \times 32.00 \mathrm{~g} \mathrm{~mol}^{-1}\right)\right) \times 0.278 \mathrm{~mol} \\ & \text { mass in one tyre }=8.011 \mathrm{~g} \\ & \text { mass of air in both tyres }=8.011 \mathrm{~g} \times 2 \\ & \quad=16.02 \mathrm{~g} \end{aligned}$ |
| :--- |
| [Mass $=19.25 \mathrm{~g}$ if value of $0.001 \mathrm{~m}^{3}$ used for volume. Allow any approximations that are more accurate than this, for example if the student has decided to use $78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2}$, 1\% Ar.] | \& 1

\hline \& (iii) \& | $\begin{aligned} & \mathrm{He}=4.003 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { mass }=2 \times 0.278 \mathrm{~mol} \times 4.003 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { mass }=2.226 \mathrm{~g} \\ & \text { mass reduction }=16.02 \mathrm{~g}-2.226 \mathrm{~g} \\ & \text { mass reduction }=13.79 \mathrm{~g} \end{aligned}$ |
| :--- |
| [Error carried forward: accept answer from (e)(ii) minus 2.226 g or answer from (e)(ii) minus 2.674 g if $0.001 \mathrm{~m}^{3}$ used for volume.] | \& 1

\hline
\end{tabular}

Question 4

| (a) | (i) | 10.8%
 More modern syntheses have considerably improved upon this overall yield. | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|}
\hline \& \& 1

1

\hline (b) \& | Structure of A |
| :--- |
| [If bromine atom is in wrong position on benzene ring, no credit is given here, but full credit is awarded in B, D, E and F provided rest of structure correct.] | \& 1

\hline \& Structure of B \& 1

\hline \& Structure of \mathbf{C} \& 1

\hline
\end{tabular}

[Allow stereoisomer with other geometry around C=A bond.]
(c)

Question 5

| (a) | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
 $[$ Accept answers where order of elements is different.] | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- |

| (e) | E and K
 [Award half a mark each. If other letters are written minus half a mark for each other letter down to zero.] | 1 |
| :---: | :---: | :---: |
| (f) | [Any one of the five alternatives below is to be awarded the mark.] The percentage of each tautomer is solvent dependent, although the top two are by far the most important. In protic solvents, hydrogen-bonding favours the top left structure. | 1 |
| (g) | $\begin{aligned} & K=[\text { Creatinine }] /[\text { Creatine }] \\ & K=\text { Integral height of signal A } / \text { Integral height of signal B } \\ & K=4 \end{aligned}$
 [This has no units. Award values between 3.5 and 5.0 the mark. There must be evidence of working/using the correct integral method to gain the mark.] Creatinine is favoured at more acidic pHs and creatine at more alkaline pHs . | 1 |
| (h) |
 [The correct structure is to be awarded 3 marks. The hydrochloride salt of this molecule (protonated on any one nitrogen) should also be awarded 3 marks.
 Incorrect structures may score 2 marks if they obey any two of the three criteria below, and 1 mark for obeying any one of the criteria.]
 - A total of $10 \mathrm{C}-\mathrm{H}$ protons in the molecule.
 This shows the student has successfully used the integrals in the spectrum to calculate the number of hydrogens.
 - The presence of a discrete ethyl group in the molecule.
 This shows the student has understood the coupling patterns in the NMR.
 - The presence of an ester functional group in place of the carboxylic acid.
 This shows the student has understood the ionisation states of the molecule at different pHs. | 3 |
| | Total | 17 |

