

$46^{\text {th }}$ INTERNATIONAL

CHEMISTRY OLYMPIAD

2014

UK Round One

MARK SCHEME

Abstract

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/nonrounded data from an earlier part of the question.

For answers with missing or incorrect units, penalise one mark for the first occurrence in each question and write UNIT next to it. Do not penalise for subsequent occurrences in the same question.

Question	1	2	3	4	5	Total
Marks Available	9	9	13	18	16	65

1. This question is about controlling phosphate levels

(a) (i) $\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{LaCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$

State symbols not required
(ii) $\mathrm{La}^{3+}+\mathrm{PO}_{4}{ }^{3-} \rightarrow \mathrm{LaPO}_{4}$

State symbols not required
(b) $\quad 2 \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NaNO}_{3}$

State symbols not required
(c) (i)

Do not accept a molecular formula. Accept if O-H bond not drawn out, but all other bonds must be drawn out.
(ii) $\mathrm{La}_{2} \mathrm{O}_{3}+6 \mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{H} \rightarrow 2 \mathrm{La}\left(\mathrm{CCl}_{3} \mathrm{CO}_{2}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$

State symbols not required
(iii) $2 \mathrm{La}\left(\mathrm{CCl}_{3} \mathrm{CO}_{2}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{CHCl}_{3}+3 \mathrm{CO}_{2}$

State symbols not required
(d) $\quad 2 \mathrm{LaCl}_{3}+6 \mathrm{NH}_{4} \mathrm{HCO}_{3} \rightarrow \mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NH}_{4} \mathrm{Cl}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

State symbols not required
(e) (i) Amount of $\mathrm{La}^{3+}=1000 \mathrm{mg} / 138.91 \mathrm{~g} \mathrm{~mol}^{-1}=7.20 \times 10^{-3} \mathrm{~mol}$

Amount of $\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}=3.60 \times 10^{-3} \mathrm{~mol}$
Molar mass of $\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(2 \times 138.91+3 \times 12.01+11 \times 16.00$ $+4 \times 1.008) \mathrm{g} \mathrm{mol}^{-1}$
$=493.88 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of $\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}=493.88 \mathrm{~g} \mathrm{~mol}^{-1} \times 3.60 \times 10^{-3} \mathrm{~mol}$
$=1780 \mathrm{mg}$ (or 1.78 g)
(ii) Amount of $\mathrm{La}^{3+}=7.20 \times 10^{-3} \mathrm{~mol}=$ Amount of $\mathrm{PO}_{4}{ }^{3-}$

Molar Mass of $\mathrm{PO}_{4}{ }^{3-}=(30.97+4 \times 16.00) \mathrm{g} \mathrm{mol}^{-1}=94.97 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of $\mathrm{PO}_{4}{ }^{3-}$ removed $=7.20 \times 10^{-3} \mathrm{~mol} \times 94.97 \mathrm{~g} \mathrm{~mol}^{-1}$
$=684 \mathrm{mg}$ (or 0.684 g)
Allow ECF when an incorrect amount of $L a^{3+}$ from (e)(i) has been used correctly in this calculation.

2. This question is about a sodium street lamp

(a) $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}$

1
(b) 3 s
(c) (i) Energy $=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 589 \times 10^{-9} \mathrm{~m}$ $=3.37 \times 10^{-19} \mathrm{~J}\left(\right.$ atom $\left.^{-1}\right)$
(ii) Energy per mole $=3.37 \times 10^{-19} \mathrm{~J} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=2.03 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
$=203 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Allow ECF from (c)(i)
(d)
one

infinity
the constant k
1
(e) \quad Energy change = I.E. (nd) - I.E. (3p)

Note this answer is negative as energy is given out. Award one mark for the expression: Energy change = I.E. $(3 p)-I . E .(n d)$
(f) (i) Intercept $=0.00245 \mathrm{~nm}^{-1}$ (Allow values from $0.00243-0.0247 \mathrm{~nm}^{-1}$)
I.E. $(3 \mathrm{p})=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 2.45 \times 10^{6} \mathrm{~m}^{-1}$
$=4.87 \times 10^{-19} \mathrm{~J}\left(\right.$ atom $\left.^{-1}\right)$
(ii) Ionisation energy of sodium $=I . E$. $(3 p)+\Delta E(3 s \rightarrow 3 p)$
I.E. $(3 \mathrm{p})=4.87 \times 10^{-19} \mathrm{~J}\left(\mathrm{atom}^{-1}\right) \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=293 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Ionisation energy of sodium $=293 \mathrm{~kJ} \mathrm{~mol}^{-1}+203 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=496 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Allow ECF from (c)(ii) or (f)(i), as long as they have shown that these two quantities must be added together, and both in the units of $\mathrm{kJ} \mathrm{mol}{ }^{1}$

3. This question is about spot cream

(a) Effective density of tazarotene $=0.90 \mathrm{~g} \mathrm{~cm}^{-3} \times 0.0005=0.00045 \mathrm{~g} \mathrm{~cm}^{-3}$ $=0.45 \mathrm{~g} \mathrm{dm}^{-3}$
Concentration of tazarotene $=0.45 \mathrm{~g} \mathrm{dm}^{-3} / 351.46 \mathrm{~g} \mathrm{~mol}^{-1}$
$=0.00128 \mathrm{M}$ (or 1.28 mM)
(b)

A

B
(c)

\mathbf{C}^{\ominus}

D

F

\mathbf{G}^{-}

I

The alkyne $\mathrm{C}-\mathrm{H}$ bond does not have to be explicitly drawn in (as in normal skeletal structure drawing).
(d) Oxidation

Reduction
Addition
Elimination
Substitution 1
(e)

\mathbf{J}^{\ominus}
(f) 20 signals
(g)

Question Total 13

4. This question is about bombardier beetles

(a) (i) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

State symbols not required
(ii) Oxidation Reduction Disproportionation Hydrolysis Dehydration
(b) Combining $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ and $\mathbf{A}+1 / 2 \mathrm{O}_{2} \rightarrow \mathbf{B}+\mathrm{H}_{2} \mathrm{O}$ gives
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathbf{A} \rightarrow \mathbf{B}+2 \mathrm{H}_{2} \mathrm{O}$
(c) (i) Amount of energy $=$ specific heat capacity \times temp. change \times mass of water
$=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1} \times 80 \mathrm{~K} \times 1000 \mathrm{~g}$
$=334 \mathrm{~kJ}$
(ii) Conc. of $\mathrm{H}_{2} \mathrm{O}_{2}$ in mixed solution = energy needed per litre / enthalpy change per mole of $\mathrm{H}_{2} \mathrm{O}_{2}$
$=334 \mathrm{~kJ} \mathrm{dm}^{-3} / 203 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=1.65 \mathrm{~mol} \mathrm{dm}^{-3}$
Therefore with equal volumes mixed, conc. of $\mathrm{H}_{2} \mathrm{O}_{2}$ initially must be double this value $=3.30 \mathrm{~mol} \mathrm{dm}^{-3}$

Award one mark for the value of $1.65 \mathrm{~mol} \mathrm{dm}^{-3}$, and one mark for the realisation of the need to double the concentration. Allow ECF from (c)(i).
(d) (i) 6
(ii) 3
(e)
Peak $I \quad \mathrm{O}-\mathrm{H}$

Peak II C-H 1
(f) (i) -OH (or hydroxyl) 1
(ii) $-\mathrm{CH}_{3}$ (or methyl) 1
(g) $\quad \mathrm{H}_{1} \quad \mathrm{~V}$
$\mathrm{H}_{2} \quad$ VII
$\mathrm{H}_{3} \quad \mathrm{VI}$
All correct: two marks, two correct: one mark, one correct: half a mark
(h)

Compound \mathbf{A}

Compound C
(i)

Compound B

Compound D

5. This question is about fire and ice

(a) $\quad \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

State symbols not required
(b) (i) Amount of $\mathrm{CH}_{4}=$ amount of $\mathrm{CO}_{2}=$ amount of CaCO_{3}

Amount of $\mathrm{CaCO}_{3}=84.73 \mathrm{~g} / 100.09 \mathrm{~g} \mathrm{~mol}^{-1}=0.847 \mathrm{~mol}$
Amount of $\mathrm{H}_{2} \mathrm{O}=116.92 \mathrm{~g} / 18.016 \mathrm{~g} \mathrm{~mol}^{-1}=6.49 \mathrm{~mol}$
$\left(\mathrm{CH}_{4}\right)_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}+2 \mathrm{OO}_{2} \rightarrow x \mathrm{CO}_{2}+(2 x+y) \mathrm{H}_{2} \mathrm{O}$
So $x=0.847 \mathrm{~mol}$, and $2 x+y=6.49 \mathrm{~mol}$
Therefore $y=6.49-(2 \times 0.847)=4.80 \mathrm{~mol}$
Expressing as integers: $x=3, y=17$
Award one mark for correct calculation of the amount of CaCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, one mark for correct algebraic expression or equivalent and one mark for final answer. Correct final values score full credit.
(ii) $\left(\mathrm{CH}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{17} \mathrm{M}_{\mathrm{r}}=354.40 \mathrm{~g} \mathrm{~mol}^{-1}$;
therefore $2835.18 \mathrm{~g} \mathrm{~mol}^{-1} / 354.40 \mathrm{~g} \mathrm{~mol}^{-1}=8$
Molecular formula is $\left(\mathrm{CH}_{4}\right)_{24}\left(\mathrm{H}_{2} \mathrm{O}\right)_{136}$
(c) Amount of $\mathrm{CH}_{4}=6.67 \times 10^{14} \mathrm{~g} / 16.04 \mathrm{~g} \mathrm{~mol}^{-1}=4.16 \times 10^{13} \mathrm{~mol}$
$\mathrm{V}=n R T / p=4.16 \times 10^{13} \mathrm{~mol} \times 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 254 \mathrm{~K} / 1.0 \times 10^{5} \mathrm{~Pa}$
$=8.78 \times 10^{11} \mathrm{~m}^{3}$
(d) (i) Mass \% of methane in methane hydrate $=$
(8×16.04) $\mathrm{g} \mathrm{mol}^{-1} / 957.07 \mathrm{~g} \mathrm{~mol}^{-1}$
= 13.4\%
(ii) Mass of Baikal methane hydrate $=6.67 \times 10^{14} \mathrm{~g} / 0.134=4.98 \times 10^{15} \mathrm{~g}$ Allow ECF from (d)(i)
(iii) Volume of methane hydrate $=4.98 \times 10^{15} \mathrm{~g} / 0.95 \mathrm{~g} \mathrm{~cm}^{-3}$
$=5.24 \times 10^{15} \mathrm{~cm}^{3}$ (or $5.24 \times 10^{9} \mathrm{~m}^{3}$)
Allow ECF from (d)(ii)
(e) (i) Unit cell mass $=957.07 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=1.59 \times 10^{-21} \mathrm{~g}$
(ii) Volume of unit cell $=1.59 \times 10^{-21} \mathrm{~g} / 0.95 \mathrm{~g} \mathrm{~cm}^{-3}=1.67 \times 10^{-21} \mathrm{~cm}^{3}$

Length of unit cell edge $=\left(1.67 \times 10^{-21} \mathrm{~cm}^{3}\right)^{1 / 3}=1.19 \times 10^{-7} \mathrm{~cm}$
(iii) Volume of methane in unit cell $=8 \times 4 / 3 \times \pi \times\left(0.21 \times 10^{-9} \mathrm{~m}\right)^{3}$ $=3.10 \times 10^{-28} \mathrm{~m}^{3}$

Volume of water in unit cell $=46 \times 4 / 3 \times \pi \times\left(0.14 \times 10^{-9} \mathrm{~m}\right)^{3}$
$=5.29 \times 10^{-28} \mathrm{~m}^{3}$
(iv) Percentage of space occupied $=$
$\left(3.10 \times 10^{-28}+5.29 \times 10^{-28}\right) \mathrm{m}^{3} / 1.67 \times 10^{-27} \mathrm{~m}^{3}$
$=50 \%$
(f)
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{CH}_{4}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{46}=8 \Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{CO}_{2}\right)+62 \Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta_{\mathrm{c}} \mathrm{H}^{\ominus}\left(\mathrm{CH}_{4}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{46}$
$=(8(-393.5)+62(-285.8)-(-6690.4)) \mathrm{kJ} \mathrm{mol}^{-1}$
$=-14177.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Forming methane hydrate from methane and water has the enthalpy change
$8 \mathrm{CH}_{4}+46 \mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{4}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{46}$
$\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=(-14177.2-8(-74.8)-46(-285.8)) \mathrm{kJ} \mathrm{mol}^{-1}=-432 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Final answer scores full marks. One mark for a correct value for $\Delta_{f} \mathrm{H}^{\rho}\left(\mathrm{CH}_{4}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{46}$, one mark for the idea of using two cycles and one mark for correct second cycle calculation. If mistake is made in calculation of $\Delta_{f} \mathrm{H}^{\circ}\left(\mathrm{CH}_{4}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{46}$ but then this answer is used correctly in the second cycle this should be given two marks overall.

Question Total

