

48 ${ }^{\text {th }}$ INTERNATIONAL
 CHEMISTRY OLYMPIAD

2016

UK Round One

MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general error carried forward can be applied. We have tried to indicate where this may happen in the mark scheme.

For answers with missing or incorrect units, penalise one mark for the first occurrence in each question and write UNIT next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous. Benzene rings may be drawn with localised or delocalised bonding.

Comments in blue have been added to some questions, these are not required for the marks, but may be of interest in subsequent discussion on the questions.

Question	1	2	3	4	5	Total
Marks Available	12	23	31	21	13	$\mathbf{1 0 0}$

1. This question is about energy storage using a chemical cycle

(a) (i) $\quad \Delta_{r} H^{\circ}($ reaction $(3))=\Delta_{f} H^{\circ}\left(\mathrm{I}_{2(\mathrm{~g})}\right)-2 \Delta_{\mathrm{f}} H^{\circ}(\mathrm{HI})=(62.4-2 \times 26.5) \mathrm{kJ} \mathrm{mol}^{-1}$ $=+9.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Plus sign not required.
(ii) $\quad \Delta S^{\circ}($ reaction $(3))=(131+261-2 \times 207) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$=-22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Minus sign must be present.
(iii) $\quad \Delta_{\mathrm{r}} \mathrm{G}^{\circ}($ reaction $(3))=9.4 \mathrm{~kJ} \mathrm{~mol}^{-1}-\left(298 \mathrm{~K} \times-0.022 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ $=+16.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Plus sign not required. Allow error carried forward from (i) and/or (ii)
(iv) $K_{298}=\exp (-\Delta G / R T)=\exp (15956 /(8.314 \times 298))$
$=1.60 \times 10^{3}$
Allow error carried forward from (iii). Do not penalise if equilibrium constant has units.
(v) $\quad \Delta \mathrm{r} \mathrm{G}^{\circ}($ reaction (3) $)=9.4 \mathrm{~kJ} \mathrm{~mol}^{-1}-\left(723 \mathrm{~K} \times-0.022 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
$=25.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$K_{723}=\exp (-\Delta G / R T)=\exp (25306 /(8.314 \times 723))$
$=0.0148$
Allow error carried forward from (i) and/or (ii). Do not penalise if equilibrium constant has units.
(b) Products of reaction (1) cancel out when they occur in the following proportion:
$2 \times$ reaction (1) + reaction (2) $+2 \times$ reaction (3).
This simplifies down to the following reaction:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
State symbols not required. Accept the equation with mole ratio 1:1:1/2. Award 1 mark if the reactions are combined in the correct ratio but simplifying is done incorrectly.
(c) $2 \times \Delta_{r} H^{\circ}(1)+\Delta_{r} H^{\circ}(2)+2 \times \Delta_{r} H^{\circ}(3)=-2 \times \Delta_{r} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)$
$\left[2 \times \Delta_{r} H^{\circ}(1)+439+2 \times 9.4\right] \mathrm{kJ} \mathrm{mol}^{-1}=484 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{r} H^{\circ}(1)=+13 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Plus sign not required. Allow error carried forward from (i).
(d) Energy stored $=242 \mathrm{~kJ}$

For the sequence: $2 \times$ reaction (1) + reaction (2) $+2 \times$ reaction (3) there are two moles of sulfur atoms.
This sequence has an overall $\Delta_{r} H^{0}=484 \mathrm{~kJ} \mathrm{~mol}^{-1}$
All this energy is 'stored' as separate hydrogen and oxygen and can be released when these are recombined.
Therefore, per mol of sulfur, the energy stored is 242 kJ .

2. This question is about the chemistry of tungsten

(a)

Bond Angle: 109.5°
Must have attempted to draw a tetrahedral shape to be given credit, i.e. do not credit square planar structures.
(b) (i) CaWO_{4} (s) $+\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq) $\rightarrow \mathrm{CaCO}_{3}$ (s) $+\mathrm{Na}_{2} \mathrm{WO}_{4}$ (aq)

State symbols not required.
(ii) $\mathrm{Na}_{2} \mathrm{WO}_{4}(\mathrm{aq})+2 \mathrm{HCl}\left(\right.$ aq) $\rightarrow \mathrm{H}_{2} \mathrm{WO}_{4}$ (aq) $+2 \mathrm{NaCl}_{\text {(aq) }}$

State symbols not required.

Correct 3D tetrahedral structure not required as long as connectivity and bonding are correct.
(iii) $\mathrm{H}_{2} \mathrm{WO}_{4}$ (aq) $\rightarrow \mathrm{WO}_{3}$ (s) $+\mathrm{H}_{2} \mathrm{O}_{\text {(g) }}$

State symbols not required.
(iv) $\mathrm{WO}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{W}_{\text {(s) }}+3 \mathrm{H}_{2} \mathrm{O}_{\text {(I) }}$

State symbols not required.
(c) (i) $x=1$
$3 \times 0=-6$
$1 \times \mathrm{Li}=+1$
Therefore $\mathrm{W}=\boldsymbol{+ 5}$
Accept if 5 is written rather than +5 .
(ii) $\mathrm{x}=0.3$
$3 \times 0=-6$
$1 \times \mathrm{Li}=+0.3$
Therefore $\mathrm{W}=\boldsymbol{+ 5 . 7}$
Accept if 5.7 is written rather than +5.7 .
(d) Assuming air to be made only of nitrogen $\left(\mathrm{N}_{2}\right)$

Density of SF_{6} relative to air $=32.06+(6 \times 19.00) /(2 \times 14.01)$
$=146.06 / 28.02$
$=5.21$
Density of WF_{6} relative to air $=183.85+(6 \times 19.00) /(2 \times 14.01)$
$=297.85 / 28.02$
$=10.63$
(e) $\mathrm{pV}=\mathrm{nRT}$

1 mol of gas occupies: $\mathrm{V} / \mathrm{n}=\mathrm{RT} / \mathrm{p}$
$=\left(8.314 \mathrm{~J} \mathrm{~K} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}\right) / 100000 \mathrm{~N} \mathrm{~m}^{-2}$
$=0.02476 \mathrm{~m}^{3} \mathrm{~mol}^{-1}$
$=2.476 \times 10^{4} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
Density of $\mathrm{WF}_{6}=297.85 \mathrm{~g} \mathrm{~mol}^{-1} / 2.476 \times 10^{4} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
$=0.0120 \mathrm{~g} \mathrm{~cm}^{-3}$
Give credit if they use $24 \mathrm{dm}^{3}$ for 1 mol of gas as a known value at STP.
(f) $\quad \mathrm{WF}_{6}{ }_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{WO}_{4}(\mathrm{aq})+6 \mathrm{HF}(\mathrm{aq})$
$\mathrm{WF}_{6}{ }_{(\mathrm{g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{WO}_{3}(\mathrm{~s})+6 \mathrm{HF}(\mathrm{aq})$
Accept either. State symbols not required.
(g) (i) Positive

This is because there are more moles of gas on the right than the left.
(ii) $\Delta_{r} H^{\circ}=\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})\right)+6 \times \Delta_{f} H^{\circ}(\mathrm{HF}(\mathrm{g}))-\Delta_{f} H^{\circ}\left(\mathrm{SF}_{6}\right)-4 \times \Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$=-735+(6 \times-273)-(-1210+4 \times-242) \mathrm{kJ} \mathrm{mol}^{-1}$
$=-195 \mathrm{~kJ} \mathrm{~mol}^{-1}$
1 mark for correct expression if numerical calculation is done incorrectly. Correct answer scores full marks.
(iii) BSF_{6} is kinetically stable but thermodynamically unstable
(h) Tungsten $=1$ atom inside unit cell $+4 \times$ atoms on face $+8 \times$ atoms on corner $=1+(4 \times 1 / 2)+(8 \times 1 / 8)=4$ atoms

Calcium $=6 \times$ atoms on face $+4 \times$ atoms on edge
$=(6 \times 1 / 2)+(4 \times 1 / 4)=4$ atoms
Oxygen $=16 \times$ atoms inside unit cell
$=16$ atoms
(i) Volume of Unit Cell $=0.524 \mathrm{~nm} \times 0.524 \mathrm{~nm} \times 1.137 \mathrm{~nm}$
$=3.122 \times 10^{-28} \mathrm{~m}^{3}=3.122 \times 10^{-22} \mathrm{~cm}^{3}$
Molar mass of $\mathrm{CaWO}_{4}=(40.08+183.85+4 \times 16.00) \mathrm{g} \mathrm{mol}^{-1}$
$=287.93 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of one formula unit $=287.93 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=4.783 \times 10^{-22} \mathrm{~g}$
Mass of one unit cell
$=4 \times 4.783 \times 10^{-22} \mathrm{~g}=1.913 \times 10^{-21} \mathrm{~g}$
Density $=1.913 \times 10^{-21} \mathrm{~g} / 3.122 \times 10^{-22} \mathrm{~cm}^{3}$
$=6.13 \mathrm{~g} \mathrm{~cm}^{-3}$
1 mark for calculation of mass of formula unit, 1 mark for four formula units per unit cell and 1 mark for answer. Correct answer scores full marks.
3. This question is about Double Bond Equivalents, DBE
(a) (i) $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}}$
(ii) $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}-2}$
(iii) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
(iv) $\mathrm{C}_{n} \mathrm{H}_{2 n-6}$
(b)

DBE 3	Ring	Double Bond	Triple Bond
	3	0	0
	2	1	0
	1	2	0
	1	0	1
	0	3	0
	0	1	1

If all correct (in any order)
Minus $1 / 2$ mark for any missing or incorrect line down to 0

$\begin{gathered} \text { DBE }= \\ 4 \\ \hline \end{gathered}$	Ring	Double Bond	Triple Bond
	4	0	0
	3	1	0
	2	2	0
	2	0	1
	1	3	0
	1	1	1
	0	4	0
	0	2	1
	0	0	2

Minus $1 / 2$ mark for any missing or incorrect line down to 0
(c) (i) 4
(ii) 9
(iii) 61
(iv) 4
(v) 4
(vi) 3
(d)

	Number of atoms in each region (must add to 8)					Structural information deduced		
	Triple (Alkyne)	Double Bond (Alkene)	Single Bond	Allene Central	Allene Flanking	Number of Triple Bonds	Number of Double Bonds	Number of Rings
A	0	8	0	0	0	0	4	1
B	0	0	8	0	0	0	0	5
C	4	0	4	0	0	2	0	1
D	0	2	0	2	4	0	5	0
E	0	8	0	0	0	0	4	1
F	2	6	0	0	0	1	3	0
G	0	6	2	0	0	0	3	2
H	0	6	2	0	0	0	3	2
I	0	2	6	0	0	0	1	4

Each line must be fully correct to score the mark
This is the correct structure

Structures A and B are worth 1 mark each, Structures C-I are worth 2 marks each. Marks are awarded for each fully correct structure in the correct place. Correct structures in an incorrect place score zero. No partial marks are awarded for a structure. No error carried forward is allowed if structure is wrong but consistent with the student's answer in the previous table. Where more there is more than one possibility only one structure needs to be drawn. There may be other possibiltilies which can be given full credit but only if they are fully consistent with all NMR data listed. Please contact the Committee if you find any alternatives.

4 This question is about the synthesis of Addyi

(a) Carbon: 45.70/12.01 $=3.805$

Hydrogen 10.55/1.008 = 10.47
Nitrogen 13.32/14.01 $=0.951$
Oxygen 30.43/15.99 $=1.90$
Simplest whole number ratio $=4: 11: 1: 2$
Empirical formula $=\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}$
If oxygen is forgotten then can award 1 mark if calculation is done correctly.
(b)
Compound \mathbf{A}
No carry forward if they
matches a their incorrect
empirical formula in (a).

(d)

Accept any one of the following for 1 mark.

If more than one atom circled then no marks are awarded.
(e)

2 marks
Give full credit to the E isomer of the imine.

2 marks
5. This question is about the radiocarbon dating of King Richard III
(a) C Wash repeatedly with dilute HCl then dilute NaOH
(b) (i)

or

or

1

Accept if they label the diagram with an ' n ' to show the polymer
(ii) $\left[\mathrm{NHCH}_{2} \mathrm{CO}\right]_{\mathrm{n}}+31 / 4 \mathrm{nO}_{2} \rightarrow 2 \mathrm{nCO}_{2}+\mathrm{nNO}_{2}+3 / 2 \mathrm{nH}_{2} \mathrm{O}$
$\left[\mathrm{NHCH}_{2} \mathrm{CO}\right]_{\mathrm{n}}+21 / 4 \mathrm{nO}_{2} \rightarrow 2 \mathrm{nCO}_{2}+\mathrm{n} / 2 \mathrm{~N}_{2}+{ }^{3} / 2 \mathrm{nH}_{2} \mathrm{O}$
Accept either equation or a multiple of either.
(iii) $\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

State symbols not required.
(iv) 40% of 1.0 g bone $=0.40 \mathrm{~g}$ polyglycine

The entire mass of carbon in polyglycine becomes graphite
Mass of graphite $=\%$ carbon in polyglycine $\times 0.40 \mathrm{~g}$
$(2 \times 12.01) /(2 \times 12.01+3 \times 1.008+16.00+14.01) \times 0.40 \mathrm{~g}$
$=0.168 \mathrm{~g}$
1
(c) Amount of $\mathrm{C}=0.002 \mathrm{~g} / 12.01 \mathrm{~g} \mathrm{~mol}^{-1}=1.665 \times 10^{-4} \mathrm{~mol}$

Number of atoms of $C=1.665 \times 10^{-4} \mathrm{~mol} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}=1.00 \times 10^{20}$
Number of atoms of ${ }^{14} \mathrm{C}$ initially $\left(\mathrm{N}_{0}\right)=\left(1.215 \times 10^{-10} / 100\right) \times 1.00 \times 10^{20}=1.22 \times 10^{8}$
Half life $(\mathrm{t} 1 / 2)=5568$ years $=5568 \times 365=2.032 \times 10^{6}$ days
Decay Constant (k) $=\ln 2 / \mathrm{t} 1 / 2=\ln 2 / 2.032 \times 10^{6}$ days
$=3.41 \times 10^{-7}$ day $^{-1}$
Number of atoms of ${ }^{14} \mathrm{C}$ left $=\mathrm{N}_{0} \exp (-\mathrm{kt})$
Number of atoms of ${ }^{14} \mathrm{C}$ decayed $=\mathrm{N}_{0}-\mathrm{N}_{0} \exp (-\mathrm{kt})$
$=1.22 \times 10^{8}-1.22 \times 10^{8} \times \exp \left(-3.41 \times 10^{-7} \times 1\right)$
$=41.6$
≈ 42 atoms
(d) Decay Constant $(k)=\ln 2 / \mathrm{t}^{1 / 2}=\ln 2 / 5568$ years $=1.245 \times 10^{-4}$ year $^{-1}$
$\mathrm{N}\left({ }^{14} \mathrm{C}\right) / \mathrm{N}\left({ }^{12} \mathrm{C}\right)=1.154 \times 10^{-12}$
$\mathrm{No}\left({ }^{14} \mathrm{C}\right) / \mathrm{N}_{0}\left({ }^{12} \mathrm{C}\right)=1.215 \times 10^{-10} / 98.93=1.228 \times 10^{-12}$
As $\mathrm{N}\left({ }^{12} \mathrm{C}\right)=\mathrm{N}_{0}\left({ }^{12} \mathrm{C}\right)$
$\mathrm{N}\left({ }^{14} \mathrm{C}\right) / \mathrm{N}_{0}\left({ }^{14} \mathrm{C}\right)=1.154 \times 10^{-12} / 1.228 \times 10^{-12}=0.9397$
For ${ }^{14} \mathrm{C}: \mathrm{N}=\mathrm{N}_{0} \exp (-\mathrm{kt})$
$\mathrm{t}=-\left[\ln \left(\mathrm{N}\left({ }^{14} \mathrm{C}\right) / \mathrm{N}_{0}\left({ }^{14} \mathrm{C}\right)\right)\right] / \mathrm{k}$
$=-[\ln (0.9397)] / 1.245 \times 10^{-4}=500$ years
Date of Death $=2012-500=1512$
Accept if any year between 2012-2016 is used as the date of the dating experiment.
No credit if they just write 1485!
Question Total

