

A competition to select the team to represent the

UNITED KINGDOM

at the

XXXVIIth INTERNATIONAL CHEMISTRY OLYMPIAD

ANSWER BOOKLET FOR MARKERS

Round I - 2005

* * * * *

Olympiad Round 1 2005 - Mark Scheme

1. This question is about carbon oxides

(a) i)
$$CaCO_{3 (s)} + 2HCI_{(aq)} \longrightarrow Ca^{2+}_{(aq)} + 2CI_{(aq)}^{-} + H_2O + CO_{2 (g)}$$
 (state symbols not required; $CaCI_2$ also fine) (1)

(b) i)
$$HCOOH + H_2SO_4 \longrightarrow CO_{(g)} + H_2O + H_2SO_4$$
 (1)

(c) i)
$$Pd^{2+}_{(aq)} + CO + H_2O \longrightarrow CO_{2(g)} + Pd_{(s)} + 2H^{+}_{(aq)}$$
 (1)

(d) i)

$$C_3H_4O_4 \longrightarrow 2H_2O + C_3O_2$$
 (2)

Total: 11

(2)

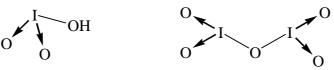
2. This question is about diiodine pentoxide

(a)
$$I_2O_5 + 5 CO ? I_2 + 5 CO_2$$
 (1)

- **(b)** Amount of $S_2O_3^{2-} = 8.00 \text{ cm}^3 \times 0.100 \text{ mol dm}^{-3} = 8.00 \times 10^{-4} \text{ mol}$
 - \therefore Amount of $I_2 = 4.00 \times 10^{-4}$ mol
 - \therefore Amount of CO = 2.00 × 10⁻³ mol
 - :. Volume of CO = $2.00 \times 10^{-3} \text{ mol} \times 24 \text{ dm}^3 \text{ mol}^{-1} = 48 \text{ cm}^3$
 - ∴ Percentage by volume of CO = $48 \text{ cm}^3/150 \text{ cm}^3 \times 100\% = 32\%$ (2)
- (c) Molar mass of $I_2O_5=(2\times126.90 \text{ g mol}^{-1})+(5\times16.00 \text{ g mol}^{-1})=333.80 \text{ g mol}^{-1}$. To form 1 mol of I_2O_5 , mass of anhydride required = 333.80 g / (1-0.01766) = 339.80 g.

The mass loss of (339.80 - 333.80 = 6.00) g is equivalent to 1/3 of a mole of water, so 3 moles of I_2O_5 must be produced for each mole of water eliminated, making the equation $H_2I_6O_{16}$? 3 $I_2O_5 + H_2O$

The empirical formula of the parent acid is therefore HI₃O₈.


(It is actually HIO₃.I₂O₅.) The equation for the dehydration is:

$$2 HI_3O_8 ? 3 I_2O_5 + H_2O$$
 (2)

(d) Parent acid: HIO₃.

Equation for formation is: $I_2O_5 + H_2O$? 2 HIO₃ Oxidation state of iodine in I_2O_5 : +5

(e)

Accept chemically sensible alternatives.

(f) $I_2 + 5 CI_2 + 6 H_2O$? 2 HIO₃ +10 HCI

(Appreciation that chlorine is oxidising iodine up to its +V oxidation state, and itself being reduced to chloride reveals the I₂:Cl₂ stoichiometry. The other numbers follow straightforwardly.)

(1)

Total: 10

(2)

(2)

3. This question is about ants

- (a) i) $6.0 \times 10^{-3} \times 0.5 \times 100 / 80 = 3.75 \times 10^{-3} \text{ cm}^3 \text{ so accept } 3.8 \times 10^{-3} \text{ cm}^3$
 - ii) $1000 / 3.75 \times 10^{-3} = 2.7 \times 10^{5}$
- (b) i) $HCOOH + NaHCO_3$? $HCOONa + H_2O + CO_2$
 - ii) $6.0 \times 10^{-3} \times 0.5 \times 1.2 / 46 = 7.8 \times 10^{-5}$ moles
 - iii) $7.8 \times 10^{-5} \times 84 = 6.6 \times 10^{-3} g = 6.6 mg$
- (c) $7.8 \times 10^{-2} \text{ mol dm}^{-3}$
- **(d)** $3.7 \times 10^{-3} \text{ mol dm}^{-3}$
- (e) $3.7 \times 10^{-3} / 7.8 \times 10^{-2} \times 100 = 4.8 \%$
- **(f)** $(3.7 \times 10^{-3})^2 / (7.8 \times 10^{-2} 3.7 \times 10^{-3}) = 1.8 \times 10^{-4} \text{ mol dm}^{-3}$ (also accept 1.9 x 10⁻⁴). This means pK_a = 3.73.

1 mark for each part

Total: 9

4. This question is about the NMR spectra of NanoPutians

(a)
$$6 = 8$$
, $9 = 11$, $19 = 23$, $20 = 22$
8 signals in total due to benzene ring carbons (2)

(b)
$$4 = 13$$
, $5 = 12$, $24 = 30$, $25 = 31$
4 signals in total due to triple bond carbons **(2)**

(c)
$$1 \equiv 16$$
, $27 \equiv 28 \equiv 29 \equiv 33 \equiv 34 \equiv 35$, 40 (unique), 41 (unique)
4 signals in total due to methyl group carbons (3)

(d) 23 different environments (i.e. 23 different signals)
(2 marks for the correct answer. 1 if the answer given is 22)

(f)

(1)	
¹ H NMR Signal	Hydrogen(s) on Carbon(s)
A	7
В	19, 23
С	9, 11
D	36
E	17
F	37 and 39
G	37 and 39
Н	3, 14
I	2, 15
J	40 or 41
К	27, 28, 29, 33, 34, 35
L	1, 16
M	41 or 40

(6)

5. This question is about the Breathalyser

(a) i)
$$CH_3CH_2OH + H_2O$$
 ? $CH_3CO_2H + 4H^+ + 4e^-$

ii)
$$Cr_2O_7^{2-} + 6e^- + 14H^+ ? 2Cr^{3+} + 7H_2O$$
 (1)

iii)
$$3CH_3CH_2OH + 2Cr_2O_7^{2--} + 16H^+$$
? $3CH_3CO_2H + 4Cr^{3+} + 11H_2O$ (2)

iv)
$$3CH_3CH_2OH + 2K_2Cr_2O_7 + 8H_2SO_4$$
? $3CH_3CO_2H + 2Cr_2(SO_4)_3 + 2K_2SO_4 + 11H_2O$ **(1)**

- (b) i) Blood alcohol = $800 \text{mg}/1000 \text{cm}^3$ Breath alcohol = $800/2300 \text{mg}/1000 \text{cm}^3 = 0.348 \text{mg}/1000 \text{cm}^3 = 348 \mu \text{g}/1000 \text{cm}^3$ (1)
 - ii) Max mass ethanol = $3 \times 348 = 1.044 \text{mg}/1000 \text{cm}^3$ \therefore Max amount = $2.27 \times 10^{-5} \text{mol}$

Moles $K_2Cr_2O_7$ required = 2/3 x 2.27 x 10^{-5} M_r ($K_2Cr_2O_7$) = 294

 \therefore Mass needed = 2/3 x 2.27 x 10⁻⁵ x 294 = 4.45mg (3)

iii) Orange to green (1)

Total: 10

6. This question is about the synthesis of the new wonder-drug 'Rimonabant'

$$B$$

CI

B

CI

B

CI

CI

B

CI

Allow structure with negative charge on carbon

$$C_{1}$$
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{5}
 C_{6}
 C_{1}
 C_{1}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{5}
 C_{5}
 C_{6}
 C_{7}
 C_{1}
 C_{1}

$$\mathbf{E}$$

(1 mark for each structure 2 bonus marks if all correct)

Total: 8
Total for paper 64 (plus 2 possible bonus marks)