

51 ${ }^{\text {st }}$ INTERNATIONAL
 CHEMISTRY OLYMPIAD

2019

UK Round One

MARK SCHEME

We encourage students to quote answers to an appropriate number of significant figures, but do not penalise students for significant figure errors. Allow marks for answers that differ from the mark scheme due to rounded/non-rounded data used from an earlier part of the question.
'Error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme.

Deduct one mark from answers with missing or incorrect units for the first occurrence in each question and write UNIT next to it. Do not penalise any further missing or incorrect units in the same question.

Accept organic structures shown in their skeletal form and displayed as formulae if the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

NEW FOR THIS YEAR: Do not award any half marks. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	Total
Marks Available	11	18	11	27	13	$\mathbf{8 0}$

1.	This question is about carbon dioxide	Mark
(a)	(i) carbon dioxide carbon monoxide One mark each. Allow any combination of dots and crosses.	
	(ii) $\mathrm{CO}_{2}=+4 \quad \mathrm{CO}=+2$ Difference $=2$ Allow -2.	V
(b)	(i) $\mathrm{c}=\mathrm{k} \times \mathrm{p}\left(\mathrm{CO}_{2}\right)$ $0.099 \mathrm{~mol} \mathrm{dm}^{-3}$	\square
	(ii) $\quad 1.09 \mathrm{~g}$ ECF answer $=(11.01 \times$ answer to part (i) $) g$	\square
	(iii) $2.45 \times 10^{5} \mathrm{~Pa}$ $\text { ECF answer }=\left(2.25 \times 10^{5} \times\right. \text { answer to part (ii)) Pa }$	\square
	(iv) \quad high pressure and low temperature \square high pressure and high temperature \square low pressure and low temperature \square low pressure and high temperature No marks if more than one box ticked.	\square
(c)	Accept values in range $57-63^{\circ} \mathrm{C}$	\square
(d)	CO 33.3 moles $\mathrm{H}_{2} \mathrm{O} 33.3$ moles $\mathrm{CO}_{2} 26.7$ moles $\mathrm{H}_{2} 26.7$ moles All four correct two marks. No partial credit.	
(e)	enthalpy of reaction $=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}-(-110.5+-241.1) \mathrm{kJ} \mathrm{mol}^{-1}$ $=-41.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Do not award mark for positive answer.	\square
		11

(f)	 One mark for each correct structure. If three structures drawn maximum mark is one if there is one correct. Four or more structures drawn is no marks.	
(g)	$\mathrm{H}_{2} \mathrm{PdCl}_{4}+4 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4} \mathrm{Cl}$ $\text { or } \mathrm{H}_{2} \mathrm{PdCl}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl}$ or suitable ionic form, eg $\mathrm{H}_{2} \mathrm{PdCl}_{4}+4 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4}{ }^{+} 2 \mathrm{Cl}^{-}$ Must be fully correct for mark.	\square
(h)	$\begin{aligned} \text { (i) } & (2 N \times I)+1=(2 \times 2 \times 1)+1 \\ = & 5 \text { lines } \end{aligned}$	\square
	$\begin{aligned} \text { (ii) } & (2 N \times I)+1=(2 \times 4 \times 1)+1 \\ = & 9 \text { lines } \end{aligned}$	\square
	$\text { (iii) } \begin{aligned} & (2 N \times I)+1=(2 \times 4 \times 1 / 2)+1 \\ = & 5 \text { lines } \end{aligned}$	\square
(i)	(i) 1:2:3:2:1	\checkmark
	(ii) 1:4:10:16:19:16:10:4:1	\square
	Total out of 18	18

3.	This question is about treating nerve agent poisoning	Mark
(a)	(i) $172.612 \mathrm{~g} \mathrm{~mol}^{-1}$	\checkmark
	```(ii) dosage = 24 hours }\times80.0\textrm{kg}\times3.00\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{mol}}{\mathrm{ hour }}{ mass of PAM = 5.76 mol }\times172.612\mp@subsup{\textrm{g mol}}{}{-1}=994\textrm{g ECF answer = (answer to part (a)(i) }\times5.76)```	$\square$
(b)	(i) First order	$\checkmark$
	(ii) Zeroth order	$\sqrt{\square}$
(c)	$K_{\mathrm{c}}=\frac{[\mathrm{AChE}-1-\mathrm{PAM}]}{[\mathrm{AChE}-1][P A M]}$   Must be fully correct for mark.	$\square$
(d)	(i) intercept $=1.58$ $\mathrm{k}_{2}=1 / \text { intercept }=0.633 \mathrm{~s}^{-1}$	$\square$
	(ii) intercept $=1.58 ;$ gradient $=6.75 \times 10^{-4}$   $\mathrm{K}=$ intercept/gradient $=1.58 / 6.75 \times 10^{-4}=2,340 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$   No ECF from part (d)(i).	$\square$
(e)	  No mark if drawn as cis isomer.	$\square$
(f)	9	$\checkmark$
(g)	  Reactivator $\mathbf{Y}$   One mark each. Award one mark out of two total if both structures are correct but bromide salts are missing. Allow ECF if cis alkene drawn here AND in part (e).	
	Total out of 11	11


4.	This question is about bees and Brexit	Mark
(a)	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$	$\checkmark$
(b)	A   B'   B   B"   One mark for each correct structure. If $\mathbf{B}$ ' and $\mathbf{B}^{\prime \prime}$ are drawn the wrong way around then one mark out of two is scored for $\boldsymbol{B}^{\prime}$ and $\boldsymbol{B}^{\prime \prime}$ ' combined. No ECF can be applied.	
(c)	$\mathrm{S}=\mathrm{C}=\mathrm{N}^{-}$   The correct shape is not required for the mark.	$\square$
(d)	$O=N^{+}=0 \quad$ Linear   The shape must be stated as linear or clearly indicated as linear from the diagram for the mark.	$\square$
(e)	One mark for $\boldsymbol{E}$, two marks for $\boldsymbol{F}$, two marks for $\boldsymbol{G}$, and one mark for $\boldsymbol{H}$. For $\boldsymbol{F}$ and $\boldsymbol{G}$ no partial credit is given - structures must be fully correct for the two marks. ECF can be awarded for $\boldsymbol{F}$ based on $\boldsymbol{E}$. ECF can be awarded for $\boldsymbol{G}$ based on $\boldsymbol{F}$ only if $\boldsymbol{G}$ is consistent with molecular formula. No ECF for $\boldsymbol{H}$ as $\boldsymbol{H}$ can be worked to backwards from product.	

(f) ||cce

(i)	Intermediate V.   Intermediate W.   Y   One mark for $\boldsymbol{V}$., two marks for $\boldsymbol{W}$. and one mark for $\boldsymbol{Y}$. Position of radical must be clearly indicated with a dot for $\boldsymbol{V}$. and $\boldsymbol{W}$. . No ECF can be awarded as there is sufficient new information about each species.	
(j)	Reagent $\mathbf{X}$ Chain-carrying radical $\mathbf{Z}$ -   $\mathrm{Cl}_{2}$ $\mathrm{Cl} \cdot$   One mark each.	$\square$ $\square$
	Total out of 27	27


5.	This question is about a biodegradable plastic	Mark
(a)	  One mark for structure. One mark for correct marking of chiral centre with asterisk.	
(b)	addition condensation neutralisation oxidation reduction   No marks if more than one box ticked.	$\square$
(c)	Compound A   No stereochemistry required.	$\square$
(d)	amount of $\mathrm{KOH}=0.0400 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.00681 \mathrm{dm}^{3}=2.72 \times 10^{-4} \mathrm{~mol}$ amount of -COOH residues $=2.72 \times 10^{-4} \mathrm{~mol}=$ amount of chains average molar mass of chain $=$ total mass $/$ amount of chains average molar mass of chain $=0.1619 \mathrm{~g} / 2.72 \times 10^{-4} \mathrm{~mol}=595 \mathrm{~g} \mathrm{~mol}^{-1}$ Correct answer required for mark. No credit for working only.	$\square$
(e)	```molar mass of polymer = molar mass of n repeat units + molar mass of H2O number of repeat units = (595-18) \mp@subsup{\textrm{g mol}}{}{-1}/72\mp@subsup{\textrm{g mol}}{}{-1} number of repeat units = 8```   Correct answer scores two marks. One mark can be awarded if working is correct and only one of the following errors has been made: leaving out the factor of -18 for water/getting the value of this factor wrong; OR using an incorrect repeat unit molar mass; OR all values correct but a calculator error has been made. Two or more errors scores no marks.   Answer based on using incorrect value of $306 \mathrm{~g} \mathrm{~mol}^{-1}=4$   ECF answer $=$ (answer to part (d) -18 ) / 72	
(f)	one mol of repeat unit reacts with one mole of NaOH mass $=286,000$ tonnes $\times 40 \mathrm{~g} \mathrm{~mol}^{-1} / 72 \mathrm{~g} \mathrm{~mol}^{-1}=159,000$ tonnes Correct answer required for mark. No credit for working only.	$\square$
(g)	amount of acid $=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0194 \mathrm{dm}^{-3} \times 5=9.70 \times 10^{-3} \mathrm{~mol}$ Correct answer required for mark. No credit for working only.	$\square$

(h)

Compound B (dimer)


No stereochemistry required.
(i)
mass of dimer $=0.1701 \mathrm{~g}$; mass of lactic acid $=0.7785 \mathrm{~g}$
Three marks for both masses correct. First mark for calculation of amount of repeat unit.
Second mark for mass of dimer. Third mark for mass of lactic acid.
amount of HCl used $=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.01850 \mathrm{dm}^{3}=1.85 \times 10^{-3} \mathrm{~mol}$
amount of NaOH in aliquot that had reacted with PLA
$=\left(0.04000 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}\right)-1.85 \times 10^{-3} \mathrm{~mol}$
$=2.15 \times 10^{-3} \mathrm{~mol}$
amount of NaOH that had reacted with PLA in stock solution $=2.15 \times 10^{-3} \mathrm{~mol} \times 5$
$=1.075 \times 10^{-2} \mathrm{~mol}$
amount of repeat unit $=1.075 \times 10^{-2} \mathrm{~mol} \quad$ First mark awarded for this
amount of dimer = amount of repeat unit - amount of acid needed in part (g)
$=1.075 \times 10^{-2} \mathrm{~mol}-9.7 \times 10^{-3} \mathrm{~mol}=1.05 \times 10^{-3} \mathrm{~mol}$
molar mass of dimer $=162 \mathrm{~g} \mathrm{~mol}^{-1}$
mass of dimer $=162 \mathrm{~g} \mathrm{~mol}^{-1} \times 1.05 \times 10^{-3} \mathrm{~mol}=0.1701 \mathrm{~g}$ Second mark awarded for this
amount of monomer $=$ amount of repeat unit $-2 \times$ amount of dimer
$=1.075 \times 10^{-2} \mathrm{~mol}-\left(2 \times 1.05 \times 10^{-3} \mathrm{~mol}\right)=8.65 \times 10^{-3} \mathrm{~mol}$
molar mass of lactic acid $=90 \mathrm{~g} \mathrm{~mol}^{-1}$
mass of lactic acid $=90 \mathrm{~g} \mathrm{~mol}^{-1} \times 8.65 \times 10^{-3} \mathrm{~mol}=0.7785 \mathrm{~g} \quad$ Third mark awarded for this ECF answer: mass of dimer $=\left(162 \times\left(1.075 \times 10^{-2}-\right.\right.$ answer to part $\left.\left.(g)\right)\right) g$ ECF answer: mass of lactic acid $=\left(90 \times\left(1.075 \times 10^{-2}-2 \times\right.\right.$ amount of dimer $\left.)\right) g$
Answers based on using incorrect value of $8.60 \times 10^{-3} \mathrm{~mol}$
mass of dimer $=0.348 \mathrm{~g}$; mass of lactic acid $=0.581 \mathrm{~g}$

