

$44^{\text {th }}$ INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round 1-2012

MARK SCHEME

Question	1	2	3	4	5	Total
Mark	9	14	17	23	17	80

Question 1			
		Answer	Marks
a)	(i)	Breaking bonds in 8 moles of $\mathrm{S}_{7}(\mathrm{~g}): 8 \times 7 \times 260.0 \mathrm{~kJ} \mathrm{~mol}^{-1}=14560.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Making bonds in 7 moles of $\mathrm{S}_{8}(\mathrm{~g}): 7 \times 8 \times 263.3 \mathrm{~kJ} \mathrm{~mol}^{-1}=14744.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Enthalpy change of reaction $=(14560.0-14744.8) \mathrm{kJ} \mathrm{mol}^{-1}=-184.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1
b)	(i)	$\begin{aligned} & \text { Amount } \mathrm{S}_{7}=0.0076 \mathrm{~g} /(7 \times 32.06) \mathrm{g} \mathrm{~mol}^{-1}=3.387 \times 10^{-5} \mathrm{~mol} \\ & \text { Amount } \mathrm{S}_{8}=0.9892 \mathrm{~g} /(8 \times 32.06) \mathrm{g} \mathrm{~mol}^{-1}=3.857 \times 10^{-3} \mathrm{~mol} \end{aligned}$	1
	(ii)	$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{S}_{8}\right]^{7} /\left[\mathrm{S}_{7}\right]^{8}$	1
	(iii)	```Value for }\mp@subsup{K}{c}{}[3.857\times1\mp@subsup{0}{}{-3}\mp@subsup{]}{}{7}/[3.387\times1\mp@subsup{0}{}{-5}\mp@subsup{]}{}{8}=7.34\times1\mp@subsup{0}{}{18 (Ignore any units) (allow error carried forward from part b(i)```	1
c)	(i)	$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}(298 \mathrm{~K})=(-296.8-(-297.1)) \mathrm{kJ} \mathrm{mol}^{-1}=(+) 0.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1
	(ii)	The most stable form is orthorhombic Allow monoclinic if the answer given in $c(i)$ is negative	1
d)			1
e)			1
f)		$[-\mathrm{N}=\mathrm{S}=\mathrm{N}-\mathrm{S}]_{\text {or }} \quad[\mathrm{N}-\mathrm{S}-\mathrm{N}=\mathrm{S}=$ or either in reverse order	1

Question 3								
		Answer						Marks
a)		All elements in correct order scores 2 marks If the correct order can be achieved by moving one element to any new position in the candidate's answer, award 1 mark						2
b)		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ 3 All answers If the correct position, awa	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ 4 rect scor rder can 1 mark	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 6 2 marks achieved by mov	$\mathrm{CH}_{3} \mathrm{CHO}$ 2 ing one	$\begin{gathered} \mathrm{C}_{4} \mathrm{H}_{10} \\ \hline 1 \end{gathered}$ pound	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \hline 5 \\ \hline \end{gathered}$ ew	2
c)	(i)	FeS_{2} (give 1 mark for FeS)						2
	(ii)	MgSO_{4} or $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$						1
	(iii)	$\mathrm{N}_{2} \mathrm{O}$						1
d)	(i)	Propanone						1
	(ii)	Methylbenzene						1
	(iii)	Sodium chlorate(1)						1
e)		White to yellow						1
f)	(i)	C						1
	(ii)	E						1
	(iii)	B						1
	(iv)	A						1
	(v)	D						1
Total for Question 3								17

Question 4 continued		
	Answer	Marks
c)	J K L	3
d)	Phenylamine 4-fluorobenzaldehyde	2

(s) 4 continued

