

44th INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round 1 - 2012

MARK SCHEME

Question	1	2	3	4	5	Total
Mark	9	14	17	23	17	80

Quest	ion 1						
		Answer	Marks				
a)	(i)	Breaking bonds in 8 moles of S ₇ (g): $8 \times 7 \times 260.0 \text{ kJ mol}^{-1} = 14560.0 \text{ kJ mol}^{-1}$ Making bonds in 7 moles of S ₈ (g): $7 \times 8 \times 263.3 \text{ kJ mol}^{-1} = 14744.8 \text{ kJ mol}^{-1}$ Enthalpy change of reaction = (14560.0 – 14744.8) kJ mol ⁻¹ = -184.8 kJ mol ⁻¹	1				
b)	(i)	Amount S₇ = 0.0076 g / (7 × 32.06) g mol ⁻¹ = 3.387×10^{-5} mol					
		Amount S₈ = 0.9892 g / (8 × 32.06) g mol ⁻¹ = 3.857×10^{-3} mol					
	(ii)	$\mathbf{K}_{c} = [S_{8}]^{7} / [S_{7}]^{8}$					
	(iii)	Value for K_c [3.857 × 10 ⁻³] ⁷ / [3.387 × 10 ⁻⁵] ⁸ = 7.34 × 10 ¹⁸					
		(Ignore any units)					
		(allow error carried forward from part b(i)					
c)	(i)	$\Delta_r H^{e}(298 \text{ K}) = (-296.8 - (-297.1)) \text{ kJ mol}^{-1} = (+)0.3 \text{ kJ mol}^{-1}$					
	(ii)	The most stable form is orthorhombic Allow monoclinic if the answer given in c(i) is negative					
d)		N = S = N $ S = S$ $ S = N$ $N = S = N$	1				
e)		N <u>S</u> N S N-S=N	1				
f)		$ - \begin{bmatrix} N = S = N - S - \end{bmatrix} - \begin{bmatrix} N - S - N = S \end{bmatrix} $ or either in reverse order	1				

	Total for Question 1							
Quest	ion 2							
			Answer		Marks			
a)	(i)	Amount of S in moles = amount of $BaSO_4 = 0.260 \text{ g} / (137.34 + 32.06 + 4(16.00)) \text{ g mol}^{-1}$ = 1.114 mmol % of sulfur by mass = 1.114 mmol × 32.06 g mol ⁻¹ × 100% = 3.57%						
	(ii)	Mass of $BaSO_4$ (aq) in 2.50 dm ³ = 2.4 mg dm ⁻³ × 2.50 dm ³ = 6.0 mg Total mass of $BaSO_4$ in 2.50 dm ³ = 6.0 mg + 260 mg = 266 mg % of sulfur by mass in human hair = (0.266 g / 0.260 g) × 3.57% = 3.65%						
b)		Oxidation			1			
c)		(i) pH 0 O HO	(ii) pH 7 O O SH	(iii) pH 14 0 ⊖0 S [⊖]	3			
d)		$ \begin{array}{l} H^{+} \left([A^{2-}]/[HA^{-}] \right) \\ & \overset{2^{-}}{} \right] / [HA^{-}] \right) \\ & = (10^{-10.31}/10^{-9}) \\ & = 0.049 \end{array} $	1					
		Then $[A^{2^-}] + [HA^-] = 100 \%$ So $[A^{2^-}] = 4.67 \%$ and therefore $[HA^-] = 95.3 \%$						
e)		Ker-S-S-Ker + 2 RS-H → R-S-S-R +	2 Ker-S-H		1			
f)		Line C			1			
g)		Gradient of graph allowed between 3.83×10^{-3} to 4.16×10^{-3} min ⁻¹ <i>k</i> is then calculated by gradient / 0.16 This corresponds to range of acceptable value for the rate constant <i>k</i> Minimum $k = 3.99 \times 10^{-4}$ mol ⁻¹ dm ³ s ⁻¹ or 2.40×10^{-2} mol ⁻¹ dm ³ min ⁻¹ Maximum $k = 4.34 \times 10^{-4}$ mol ⁻¹ dm ³ s ⁻¹ or 2.60×10^{-2} mol ⁻¹ dm ³ min ⁻¹ 2 marks for correct value with correct units; 1 mark if correct but units missing / wrong; 1 mark if units correct but value is calculated (correctly) from gradient outside range: 0 marks correct units with incorrect answer						
h)		Gradient of graph allowed between 1.23×10^{-2} to 1.27×10^{-2} min ⁻¹ Using <i>k</i> from part (g), concentration is calculated by dividing gradient by <i>k</i> . Concentration = 0.499 mol dm ⁻³ Molar mass of ammonium thioglycolate = (14.01 + 4 × 1.008) + (2 × 12.01 + 2 × 16.00 + 3 × 1.008 + 32.06) = 109.146 g mol ⁻¹ Amount in one bottle = 0.500 × 0.499 × 109.146 = 27.2 g 2 marks: One of these is for calculating a correct concentration given their k in part (g), and one for a correct mass from their concentration. Any answer close to 27g where the correct method has been used should be given full						
				Total for Question 2	14			

Quest	ion 3										
		Answer								Marks	
a)		Longest-known Most recently discovered									
		S	Р		0		А	r	Pu		
		All elements	in correct or	der sc	ores 2 mai	rks				2	
		If the correct order can be achieved by moving one element to any new position in the candidate's answer, award 1 mark									
b)											
		$C_2H_5OC_2H_5$	C_2H_5OH	HOC	OCH ₂ CH ₂ OH CH ₃ CHO C ₄ H ₁₀ H ₂ O				H ₂ O		
		3	4		6	2		1	5		
										2	
		All answers correct scores 2 marks									
		If the correct order can be achieved by moving one compound to a new position, award 1 mark									
c)	(i)	FeS ₂ (give 1 mark for FeS)								2	
	(ii)	MgSO ₄ or MgSO ₄ .7H ₂ O								1	
	(iii)	N ₂ O							1		
d)	(i)	Propanone								1	
	(ii)	Methylbenzene							1		
	(iii)	Sodium chlorate(I)							1		
e)		White to yellow							1		
f)	(i)	с								1	
	(ii)	E								1	
	(iii)	В								1	
	(iv)	А								1	
	(v)	D								1	
		·						Total for	Question 3	17	

Question 5										
		Answer							Marks	
a)	(i)	$C_{132}H_{120}N_2 + 164O_2 \rightarrow 132CO_2 + 60H_2O + 2NO_2$							1	
		or $C_{132}H_{120}N_2 + 162O_2 \rightarrow 132CO_2 + 60H_2O + N_2$							1	
	(ii)	$M_r = (132 \times 12.01) + (120 \times 1.008) + (2 \times 14.01) = 1734.30$								
		% of C = ((132 × 12.01) / 1734.30) × 100% = 91.41 %								
		% of H = $((120 \times 1.008) / 1734.30) \times 100\% = 6.97\%$								
L)		% 01 N = ((2 X 14.01) / 1/3	34.30) × 1	100% = 1	02 %					
(0)		R H ₃ C H ₃							6	
c)		"B and F" is awarded 2 m	narks							
		"B and F; A and C" is awa	rded one	mark					2	
		Any other answer is awarded no marks								
d)		A, C and E. Any other answer is awarded no mark								
e)				1		1	1			
			A	В	С	D	E	F		
		(i) Spin clockwise		\checkmark						
		(ii) Spin anti-clockwise						\checkmark		
		(iii) Remain stationary	\checkmark		✓	1			6	
		(iv) Move forwards								
		One mark for each car/letter/column								
		Note that If B is marked as 'anti-clockwise' and F is marked as 'clockwise', this combination scores 1 mark for consistent error.								
Total for Question 5									17	