42nd INTERNATIONAL CHEMISTRY OLYMPIAD
 UK Round One - 2010

 MARKING SCHEME

 MARKING SCHEME}

Notes

Chemical equations may be given as sensible multiples of those given here.

Formulae can be given by any conventional method (i.e. structural or molecular).

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once in the whole paper.

Total 61 marks.

Question 1				
		Answer		Marks
(a)		Ambrox $\left(\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}\right)$ has a molar mass of $((16 * 12.01)+(28 * 1.008)+(1 * 16))=236.384 \mathrm{~g} \mathrm{~mol}^{-1} .$ 10000000 g produced every year, therefore $(10000000 / 236.384)=$ 4.2×10^{4} moles of Ambrox are produced each year.		1 mark
(b)		A	B $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}$ Accept structures with the nitrile group shown as CN	1 mark per correct structure
		C $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}$ Accept structures with the carboxyl group shown as COOH .	D	
(c)	i)	The percentage yields for each step are combined to give an overall yield of 24.87%.		1 mark
	ii)	Number of moles of (-)-drimenol needed $=$ (number of moles of Ambrox produced in a year)/(overall yield) $=(42304.5 / 0.2487)=$ 170102.5 moles of (-)-drimenol (-)-drimenol has a molar mass of $\left(\left(15^{* 1} 2.01\right)+\left(26^{*} 1.008\right)+\left(1^{*} 16\right)\right)=$ $222.358 \mathrm{~g} \mathrm{~mol}^{-1}$. The mass of (-)-drimenol needed is therefore (222.358*170102.5) $=$ 38 tonnes. Also accept correctly worked solutions using the candidate's answers to (a) and (c) i). Do not penalise candidates for rounding values in the intermediate part of the calculation.		1 mark
	iii)	The mass of bark needed = (mass of (-)-drimenol)/(proportion of (-)-		1 mark

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

| | drimenol in bark $)=37.825 / 0.005=\underline{7.6 \times 10^{3}}$ tonnes.
 Also accept correctly worked solutions using the candidate's answer
 to (c) ii). | |
| :--- | :--- | :--- | :--- |

Question 3			
		Answer	Marks
(a)		$\mathrm{U}+3 \mathrm{CIF}_{3} \longrightarrow \mathrm{UF}_{6}+3 \mathrm{CIF}$	1 mark
(b)		The Ag and Cl in AgCl should be circled.	1 mark
(c)	i)	$3 \mathrm{IF} \longrightarrow \mathrm{I}_{2}+\mathrm{IF}_{3} \quad 5 \mathrm{IF} \mathrm{F}_{3} \longrightarrow \mathrm{I}_{2}+3 \mathrm{IF}_{5} \quad 7 \mathrm{IF}_{5} \longrightarrow \mathrm{I}_{2}+5 \mathrm{IF}_{7}$	$\begin{gathered} 3 \\ \text { marks } \end{gathered}$
	ii)		$\begin{gathered} 3 \\ \text { marks } \end{gathered}$
	iii)	IF_{5} doesn't disproportionate.	1 mark

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

Question 4			
		Answer	Marks
(a)	i)	$A=$ Water vapour (or gas), $\quad B=I c e($ or solid), $\quad C=$ Liquid water (or liquid)	1 mark
	ii)	 Both correct ($\mathbf{2}$ marks). One mark for each correct temperature (can be either in ${ }^{\circ} \mathrm{C}$ or K). Must indicate clearly that temperatures correspond to the point on the graph where the lines intersect to get the marks.	2 marks
(b)	i)	 (1 mark) Accurate positioning is not required but line they have drawn must be below line C at all points.	1 mark
	ii)	Higher than Water	1 mark
(c)	i)	$\begin{aligned} & \mathrm{RMM}\left(\mathrm{H}_{2} \mathrm{O}\right)=18.016 \\ & \text { Density of } \mathrm{H}_{2} \mathrm{O}=1000 \mathrm{~g} \mathrm{dm}{ }^{-3} \\ & \text { Concentration of Water }=\text { Density } / \mathrm{RMM}=55.5 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	1 mark
	ii)	$\begin{aligned} & \text { Concentration of } \mathrm{NaCl}=3.00 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { Concentration of ions }=6.0 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { Concentration of } \mathrm{H}_{2} \mathrm{O}=55.5 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { Mole fraction of ions } \begin{aligned} \left(\mathrm{x}_{\mathrm{i}}\right) & =6.0 /(6.0+55.5) \\ & =0.10 \end{aligned} \end{aligned}$	1 mark

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

(d)	i)	$\begin{aligned} & \Delta T=\frac{x_{i} R T_{m}{ }^{2}}{\Delta_{m} H^{\ominus}} \\ & \Delta \mathrm{T}=(0.0976 \times 8.314 \times 273 \times 273) / 6010 \\ & \Delta \mathrm{~T}=10.1 \mathrm{~K} \\ & \text { Freezing Point }=-10.1^{\circ} \mathrm{C} \text { or } 262.9 \mathrm{~K} \end{aligned}$ All correct (2 marks) [Error Carried Forward - Answer should be $103.1 \times$ Answer to part c) ii)] If enthalpy is used in kJ without converting then 1 mark.	2 marks
	ii)	$\begin{aligned} & x_{i}=\frac{\Delta T \Delta_{m} H^{\Theta}}{R T_{m}{ }^{2}} \\ & \mathrm{x}_{\mathrm{i}}=(21.1 \times 6010) /(8.314 \times 273 \times 273) \\ & \mathrm{x}_{\mathrm{i}}=0.205 \\ & \mathrm{x}_{\mathrm{i}}=[\text { [ions }] /([\text { ions }]+[\text { water }]) \\ & 0.205=\text { [ions }] /[\text { [ions }]+[55.5]) \\ & \text { Rearranging, } \text { [ions }]=14.31 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { Concentration of } \mathrm{NaCl}=7.16 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$ All correct ($\mathbf{2}$ marks) Correct calculation of $x_{i}\left(\mathbf{1}\right.$ mark). If x_{i} incorrect but correct calculation to work out $[\mathrm{NaCl}]$ from x_{i} (1 mark)	2 marks
(e)		All correct ($\mathbf{2}$ marks). If [ions] of $6.0 \mathrm{~mol} \mathrm{dm}^{-3}$ used or failure to account for bound water but all else correct (1 mark). (Final answer should be $x_{i} \times$ 103.1). If more than one mistake made in calculation of x_{i} no marks.	2 marks

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

Question 6			
		Answer	Marks
(a)		Mass of a gold atom $=197 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}=3.27 \times 10^{-22} \mathrm{~g}$	1 mark
(b)		Number of atoms in unit cell $=(8 \times 1 / 8)+(6 \times 1 / 2)=4$	1 mark
(c)	i)	If a is the length of the unit cell edge and r is the radius of an atom: $a \sqrt{2}=4 r$ length $A B=4 r / \sqrt{ } 2=2 \sqrt{ } 2 \times r$	1 mark
	ii)	volume of unit cell $=32 r^{3} / \sqrt{ } 2=16 \sqrt{ } 2 \times r^{3}$	1 mark
	iii)	length of body diagonal $a \sqrt{ } 3=2 \sqrt{6} \times r$	1 mark
(d)		Molar volume of gold $=197 \mathrm{~g} \mathrm{~mol}^{-1} / 19.3 \mathrm{~g} \mathrm{~cm}^{-3}=10.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$	1 mark
(e)		$\begin{aligned} \text { Fraction } & =4 \times \text { volume of gold atom } / \text { unit cell volume } \\ & =\left(4 \times 4 / 3 \pi r^{3}\right) /\left(16 \sqrt{ } 2 \times r^{3}\right)=\pi \sqrt{ } 2 / 6=0.74 \end{aligned}$ Can accept $\pi \sqrt{ } 2 / 6$	1 mark
(f)		$\begin{aligned} & \text { Radius of gold atom }=[(\text { volume of gold atom }) /(4 / 3) \pi]^{1 / 3} \\ & \quad=\left[\left(10.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}\right) \times 0.74 /(4 / 3) \pi\right]^{1 / 3} \\ & =1.44 \times 10^{-8} \mathrm{~cm} \end{aligned}$	1 mark
(g)	i)	Surface area of dome $=1 / 2 \times 4 \pi(21 \mathrm{~m} / 2)^{2}=693 \mathrm{~m}^{2}$ Volume of gold $=80000 \mathrm{~g} / 19.3 \mathrm{~g} \mathrm{~cm}^{-3}=4145 \mathrm{~cm}^{3}=0.004145 \mathrm{~m}^{3}$ Average thickness of gold $=0.004145 \mathrm{~m}^{3} / 693 \mathrm{~m}^{2}=6.0 \times 10^{-6} \mathrm{~m}=$ $6.0 \times 10^{-4} \mathrm{~cm}$	1 mark
	ii)	Thickness of a layer of gold atoms $=(2 \sqrt{ } 6 \times r) / 3=2.35 \times 10^{-8} \mathrm{~cm}$ Number of layers of gold atoms $=6.0 \times 10^{-4} \mathrm{~cm} / 2.35 \times 10^{-8} \mathrm{~cm}=$ 2.5×10^{4}	1 mark
		Only penalise once for error carried forward	

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

