42nd INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round One - 2010

MARKING SCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.

Formulae can be given by any conventional method (i.e. structural or molecular).

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once in the whole paper.

Total 61 marks.

Questi	<u>on 1</u>	Δης	Wor	Marks	
(a)					
		Ambrox ($C_{16}H_{28}O$) has a molar mass of ((16*12.01)+(28*1.008)+(1*16)) = 236.384 g mol ⁻¹ .			
		10000000 g produced every year, therefore (1000000/236.384) = $\frac{4.2 \times 10^4}{1000000}$ moles of Ambrox are produced each year.			
(b)		A	В		
()		0=`\$, N		
				1 mark per	
				correct	
		\land	\wedge	structure	
		C ₁₆ H ₂₈ O ₃ S	C ₁₆ H ₂₅ N		
			Accept structures with the nitrile group shown as CN	_	
		С	D		
		0 0	ОН		
		ОН			
			ОН		
		X ~	X ~		
		$C_{16}H_{26}O_2$	$C_{16}H_{30}O_2$		
		Accept structures with the carboxyl group shown as COOH.			
(-)				4	
(c)	i)	The percentage yields for each ste yield of 24.87 %.	ep are combined to give an overall	1 mark	
	ii)	Number of moles of (-)-drimenol n	eeded = (number of moles of	1 mark	
	,	Ambrox produced in a year)/(over		_	
		170102.5 moles of (-)-drimenol			
		(-)-drimenol has a molar mass of (222.358 g mol ⁻¹ .	(15*12.01)+(26*1.008)+(1*16)) =		
		The mass of (-)-drimenol needed is therefore (222.358*170102.5) = <u>38 tonnes</u> .			
		Also accept correctly worked solutions using the candidate's answers to (a) and (c) i).			
		Do not penalise candidates for rounding values in the intermediate part of the calculation.			
	iii)	The mass of bark needed = (mass	of (-)-drimenol)/(proportion of (-)-	1 mark	
Nata T		are to be taken under controlled cor		1	

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

drimenol in bark) = 37.825/0.005 = <u>7.6x10³ tonnes</u> .	
Also accept correctly worked solutions using the candidate's answer to (c) ii).	

Ques	tion 2		
		Answer	Marks
(a)		% Cu = 27.58%	2 marks
(b)	i)	$Ag^+ + CI^- \rightarrow AgCI$ OR $AgNO_3 + CI^- \rightarrow AgCI + NO_3^-$	1 mark
	ii)	% CI = 38.46%	2 marks
(c)	i)	Oxygen	1 mark
	ii)	C:H:N:Cu:Cl = 8:24:2:25 2 marks or nothing.	2 marks
	iii)	[Cu ₄ Cl ₁₀ O] ⁴⁻	1 mark

Ques	tion 3		
		Answer	Marks
(a)		$U + 3CIF_3 \longrightarrow UF_6 + 3CIF$	1 mark
(b)		The Ag and CI in AgCI should be circled.	1 mark
(c)	i)	$3IF \longrightarrow I_2 + IF_3$ $5IF_3 \longrightarrow I_2 + 3IF_5$ $7IF_5 \longrightarrow I_2 + 5IF_7$	3 marks
	ii)	3IF → I ₂ + IF ₃ $\Delta_r H^{\theta} = -3\Delta_f H^{\theta}(IF) + \Delta_f H^{\theta}(IF_3) = (286.2 - 486) \text{ kJ mol}^{-1} = -199.8 \text{ kJmol}^{-1}$	
		$5IF_3$ → $I_2 + 3IF_5$ $\Delta_r H^{\theta} = -5\Delta_f H^{\theta}(IF_3) + 3\Delta_f H^{\theta}(IF_5) = (2430 - 2529) \text{ kJ mol}^{-1} = -99 \text{ kJ} \text{ mol}^{-1}$	3 marks
		7IF ₅ → I ₂ + 5IF ₇ $\Delta_{\rm r} {\rm H}^{\theta} = -7 \Delta_{\rm f} {\rm H}^{\theta} ({\rm IF}_5) + 5 \Delta_{\rm f} {\rm H}^{\theta} ({\rm IF}_7) = (5901 - 4812.5) \text{ kJ mol}^{-1} = +1088.5 \text{ kJ mol}^{-1}$	
	iii)	IF_5 doesn't disproportionate.	1 mark

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

Quest	ion 4	-	l
		Answer A = Water vapour (or gas), B = Ice (or solid), C = Liquid water	Marks 1 mark
(a)	i)	(or liquid)	THAIK
	ii)	Chemical Potential A A B B B B B B B B B B B B B B B B B	2 marks
(b)	i)	Chemical Potential Chemical Chemical Potential of a Salt Solution Temperature (1 mark) Accurate positioning is not required but line they have drawn must be below line C at all points.	1 mark
	ii)	Higher than Water	1 mark
(c)	i)	RMM (H ₂ O) = 18.016 Density of H ₂ O = 1000 g dm ⁻³ Concentration of Water = Density/RMM = 55.5 mol dm ⁻³	
	ii)	Concentration of NaCl = 3.00 mol dm^{-3} Concentration of ions = 6.0 mol dm^{-3} Concentration of H ₂ O = 55.5 mol dm^{-3} Mole fraction of ions (x _i) = $6.0/(6.0 + 55.5)$ = 0.10	1 mark

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

(d)	i)	$\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$	2 marks
		$\Delta T = (0.0976 \times 8.314 \times 273 \times 273)/6010$	
		$\Delta T = 10.1 \text{ K}$ Freezing Point = -10.1 °C or 262.9 K	
		All correct (2 marks) [Error Carried Forward – Answer should be 103.1 x Answer to part c) ii)] If enthalpy is used in kJ without converting then 1 mark .	
	ii)	$x_i = \frac{\Delta T \Delta_m H^{\Theta}}{R T_m^2}$	
		x _i = (21.1 x 6010)/(8.314 x 273 x 273)	
		$x_i = 0.205$ $x_i = [ions]/([ions] + [water])$	2 marks
		0.205 = [ions]/([ions] + [55.5])	
		Rearranging, [ions] = $14.31 \text{ mol dm}^{-3}$	
		Concentration of NaCl = 7.16 mol dm ⁻³	
		All correct (2 marks) Correct calculation of x_i (1 mark). If x_i incorrect but correct calculation to work out [NaCl] from x_i (1 mark)	
		Concentration of $CaCl_2 = 3.0 \text{ mol dm}^3$	
(e)		Concentration of ions = 9.0 mol dm ⁻³ Concentration of H ₂ O total = 55.5 mol dm ⁻³	
		Concentration of Free $H_2O = 55.5 - (9 \times 3.0)$	
		$= 28.5 \text{ mol dm}^{-3}$	
		Mole fraction of ions $(x_i) = 9.0/(9.0 + 28.5)$ = 0.240	
		$\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$	2 marks
		$\Delta T = (0.240 \times 8.314 \times 273 \times 273)/6010$	
		$\Delta T = 24.7 \text{ K}$	
		Freezing Point = -24.74 °C or 248.3 K	
		All correct (2 marks). If [ions] of 6.0 mol dm ⁻³ used or failure to account for bound water but all else correct (1 mark). (Final answer should be $x_i \times 103.1$). If more than one mistake made in calculation of x_i no marks.	

Ques	tion 5	5		
			swer	Marks
(a)		i) +4 ii) +8	iii) +6	All correct = 1 2 correct = $\frac{1}{2}$
(b)		Oxidation		1 mark
(c)		OsO4		1 mark
(d)		+6		1 mark
(e)	i)	H ₃ C CH ₂ CH ₃	ii) H ₃ C CH ₂ CH ₃	All correct = 2 2 correct = $\frac{1}{2}$
	iii)	H ₃ C CH ₂ CH ₃	iv) H ₃ C CH ₂ CH ₃	
(f)	i)	3		1 mark
		DIOL	ALKENE	
(5)		HO, CH ₂ CH ₃	CH ₂ CH ₃	
(f)	ii)		/	
		H ₃ CH ₂ C OH	H ₃ CH ₂ C	
		HO, CH ₂ CH ₃	CH ₂ CH ₃	
			H ₃ CH ₂ C	
		HO CH_2CH_3 H ₃ CH ₂ C OH	H ₃ CH ₂ C CH ₂ CH ₃	
		(1 mark) for each correct pair o		
		of (3 marks) if all correct. If mes not penalise again if answer to t		3 marks
		for correct diol with incorrect or on its own.		
(g)		5 8 9 12		
		All correct (2 marks); (¹ / ₂ mark for each correct number). If more than four numbers are given then (minus ¹ / ₂ mark) for each additional answer above the first four down to a minimum of zero.		2 marks
	1			

uestion	3	
	Answer	Marks
)	Mass of a gold atom = 197 g mol ⁻¹ / 6.02×10^{23} mol ⁻¹ = 3.27×10^{-22} g	1 mark
)	Number of atoms in unit cell = $(8 \times 1/8) + (6 \times 1/2) = 4$	1 mark
;) i)	If <i>a</i> is the length of the unit cell edge and <i>r</i> is the radius of an atom: $a\sqrt{2} = 4r$	1 mark
	length AB = $4r / \sqrt{2} = 2\sqrt{2} \times r$	
ii)	volume of unit cell = $32r^3 / \sqrt{2} = 16\sqrt{2} \times r^3$	1 mark
iii	length of body diagonal $a\sqrt{3} = 2\sqrt{6} \times r$	1 mark
)	Molar volume of gold = 197 g mol ⁻¹ / 19.3 g cm ⁻³ = 10.2 cm ³ mol ⁻¹	1 mark
)	Fraction = 4 × volume of gold atom / unit cell volume = $(4 \times 4/3 \pi r^3) / (16\sqrt{2} \times r^3) = \pi\sqrt{2} / 6 = 0.74$	1 mark
	Can accept $\pi\sqrt{2}$ / 6	
)	Radius of gold atom = [(volume of gold atom) / $(4/3)\pi$] ^{1/3} = [(10.2 cm ³ mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹) × 0.74 / $(4/3)\pi$] ^{1/3} = 1.44 × 10 ⁻⁸ cm	1 mark
) i)	Surface area of dome = $\frac{1}{2} \times 4\pi (21 \text{ m} / 2)^2 = 693 \text{ m}^2$	1 mark
	Volume of gold = 80 000 g / 19.3 g cm ^{-3} = 4 145 cm ^{3} = 0.004 145 m ^{3}	
	Average thickness of gold = 0.004 145 m ³ / 693 m ² = 6.0 × 10^{-6} m = 6.0 × 10^{-4} cm	
11)	Thickness of a layer of gold atoms = $(2\sqrt{6} \times r) / 3 = 2.35 \times 10^{-8}$ cm Number of layers of gold atoms = 6.0×10^{-4} cm / 2.35×10^{-8} cm = 2.5×10^{4}	1 mark
	Only penalise once for error carried forward	