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Introduction 

It is slightly over 30 years since I was first asked to 
teach something known as �general chemistry� at the 
University of Illinois. Without any idea of what went 
into that course, the order in which topics should be 
taught, or the amount of time that should be devoted 
to each topic, I asked a couple of senior colleagues 
what they did when they taught this course and tried 
to do the same.  

During the course of that first semester, I found that I 
enjoyed teaching and that the students enjoyed having 
me as their instructor. Everything was going well 
until I made the mistake of analyzing the students� 
answers to the exams I gave them. I was shocked; or, 
in the language of Jean Piaget, utterly disequilibrated. 
In spite of clear, concise, well-organized, and well-
delivered lectures, I found that bright, hardworking 
science and engineering majors couldn�t solve 
�simple� problems on topics that had been taught � 
and taught well!1 Thus, it shouldn�t be surprising that 
one of the topics I became interested in as a 
beginning researcher in chemical education was 
problem solving.  

Over the course of about 20 years, the author has 
worked with roughly a dozen graduate students 
pursuing M.S. or Ph.D. degrees in chemical education 
whose studies focused on different aspects of problem 
solving. It is the results of these students� work that 
serves as the basis for this paper. 

Problem-solving research 

Virtually all of our insight into problem solving has 
come from research that uses qualitative methods, in 

which we interview people struggling to solve 
problems and ask them to �think aloud� � to talk 
about what they are doing, or what they are thinking, 
while they are involved in the problem-solving 
process. We�ve worked in a variety of courses, from 
general chemistry through the sophomore organic and 
inorganic courses, to physical chemistry, and even 
advanced organic chemistry courses taken by 
graduate students. 

A few samples of the kinds of questions we have 
given to participants in our interviews are shown 
below. The first question is from an early study of 
problem solving by science and engineering majors 
enrolled in a general chemistry course at Purdue; the 
second is from a study of undergraduates, graduate 
students, and faculty trying to predict the product of 
an inorganic reaction; the third comes from a study of 
students enrolled in a graduate-level organic 
chemistry course; and the fourth is from a study of 
graduate students� understanding of aspects of 2D FT 
NMR.  
• Uranium reacts with fluorine to produce a

compound, which is a gas at 57°C. The density
of this gas is 13.0 g/L at 57°C and 1 atm
pressure. Is the molecular formula of this
compound (a) UF2, (b) UF3, (c), UF4, (d) UF5 or
(e) UF6?

• Predict the products of the following reactions:

Na + H2O →  NaOH + Cl2 → 
MgO + H2O → H2S + Cl2 → 
Ba3N2 + H2O → NaOH + SO2 → 
XeF2 + D2O → NO2 + H2O → 

• Explain the following reaction (Figure 1).
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Figure 2 
 

 

• Starting from thermal equilibrium (with Mº 
aligned along the Z axis) and assuming no delays 
between pulses, predict in which plane the 
magnetization vector M will lay after 
experiencing the following pulse sequence. 
Assume the RF transmitter is aligned along the 
+X axis. 90ºx, 90ºx, 180ºx�, 90ºx�, 270ºx�, 90ºx�, 
90ºx. 

 
Problems versus exercises 
 
Chemists, who are used to differentiating between 
metals and nonmetals, between ionic and covalent 
bonds, between acids and bases, between polar and 
non-polar solvents, and so on, should be particularly 
sensitive to the role that duality can play in describing 
a phenomenon. Thus, they shouldn�t be surprised that 
early research on problem solving was driven, in part, 
by attempts to distinguish between the way subject-
matter experts and novices approached certain tasks.2  
Our work has led us to question the value of 
comparing the work of experts and novices because 
we don�t believe a given task means the same thing to 
both groups.3 To illustrate this, consider a problem 
we have given to hundreds, if not quite thousands, of 
industrial chemists participating in workshops on 

engine versus the caboose � such as the wavy line 
indicating smoke escaping from the engine of the 
trains in the following drawing. So far, without 
exception, they have all labeled the length of one 
train as �x� and the other as �3x� They have also 
labeled the distance between the engine of one train 
and the engine of the other, and between the caboose 
on one train and the caboose on the other, as shown in 
Figure 2. 

They then write an equation in one unknown and 
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problem solving or graduate students participating in 
a training program for teaching assistants. 

Two trains are stopped on adjacent tracks. The 
engine of one train is 1000 yards ahead of the 
engine of the other. The end of the caboose of the 
first train is 400 yards ahead of the end of the 
caboose of the other. The first train is three times 
as long as the second. How long are the trains? 

 
Let�s assume, for the sake of convenience, that the 
two trains are headed in the same direction. Let�s also 
remind ourselves of the definition of a caboose � the 
car that used to be placed at the end of a train, which 
was used by the crew on the train. 
 
We�ve found that industrial chemists invariably start 
with a drawing, using some convention to identify the 

solve for �x.� 
3x + 400 = x + 1000 
2x = 600    
x = 300 
 
The teaching assistants do virtually the same things. 
The only fundamental difference between the two 
groups is the tendency for those in industry to write �x 
= 300� and for those in academia to write �x = 300 
yd.�  
 
When the industrial chemists are told that there is no 
partial credit in this course, and they therefore get a 
zero, they get mad. They get a zero for the obvious 
reason � they haven�t answered the question! When 
told that they are going to receive no credit for their 
answer, the graduate students shrug this off. They�re 
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Figure 3 
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use to not getting the credit they feel they deserve on 
exams. 
 
For now, let�s focus on two observations about this 
problem. First, when faced with a novel problem, 
practicing chemists almost always start with a 
drawing of some kind, and frequently annotate the 
drawing with relevant information. Second, practicing 
chemists stop their problem solving activities when 
they get to the point that they fully understand the 
problem; not when they get the �answer�. 
 
Now let�s consider another question: 

What is the molarity of an acetic acid solution, if 
34.57 mL of this solution is needed to neutralize 
25.19 mL of 0.1025 M sodium hydroxide.4 

CH3CO2H(aq) + NaOH(aq) →  
Na+(aq) + CH3CO2

-(aq) + H2O(l) 
What would you expect practicing chemists to do? 
Would they start with an equation or formula, such 
as: n = M x V? or with a drawing such as Figure 3? 
 

The answer should be obvious � in the absence of 
explicit instruction to do so, no practicing chemist 
would draw a picture when doing this routine 
exercise. They would all start by feeding numbers 
into an equation. 
 
These examples suggest that a given individual might 
exhibit fundamentally different behaviors on different 
problem-solving tasks. To help the reader understand 
the source of these differences, we need to define the 
terms problem and problem solving. We�ll start with 
John Hayes� definition of the term problem.5 

Whenever there is a gap between where you are 
now and where you want to be, and you don't 
know how to find a way to cross that gap, you 
have a problem. 

 
According to Hayes, the presence of a gap between 
where you are and where you want to be is a 
necessary � but not sufficient � criterion to classify 
a task as problem. There also has to be an element of 
uncertainty or confusion, if not downright ignorance, 
about how one is going to cross that gap. 
 
Almost 20 years ago, Wheatley proposed a definition 
of problem solving that is consistent with Hayes� 
definition of a problem. Wheatley argued that 
problem solving is �what you do, when you don’t 
know what to do�.6 
 
If the definitions proposed by Hayes and Wheatley 
are accepted, it should be easy to understand why we 
stress the difference between tasks that are routine 
exercises and those that are novel problems. When 
people first encounter these terms, they often assume 
that the difference between an exercise and a problem 
is based on difficulty, or complexity. Our work has 
shown that problems are neither inherently more 
difficult nor more complex. The only difference 
between an exercise and a problem is the element of 
familiarity.  
 
Consider the following question from a general 
chemistry exam. 

What weight of oxygen is required to burn 10.0 
grams of magnesium? 

 2 Mg(s) + O2(g) →  2 MgO(s) 
This is a routine exercise for a practicing chemist, but 
a novel problem for students who encounter 
chemistry for the first time.  
 
Another example of this phenomenon can be found in 
the following question from a sophomore organic 
chemistry course. 

Robinson annulation reactions involve two steps: 
Michael addition and aldol condensation. 
Assume that Michael addition leads to the 
following intermediate.  

O

O

O
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What would be produced when this intermediate 
undergoes aldol condensation?   

 
This is a problem for most chemists, but a routine 
exercise for those who either teach or do organic 
chemistry. Not because they�re any brighter, but 
because they are so familiar with similar tasks. 
 
The distinction between exercises and problems is 
important because it is a potential source of 
miscommunication between instructors and their 
students. We tend to put a content expert in the 
classroom for whom tasks that arise during the 
semester are routine exercises, and expect that 
individual to �teach� students for whom these tasks 
are novel problems. Consider what would happen if 
we asked organic chemists to teach physical 
chemistry, or vice versa. The approach they would 
take to �teaching� students how to solve problems 
would be different, not simply because of differences 
in the way they think about chemistry, but because of 
differences in their familiarity with these tasks. 
 
The difference between the way exercises and 
problems are worked is particularly well illustrated by 
the examples that appear in so many textbooks. These 
examples have several characteristics. 
• They are logical sequences of steps. 
• They string together in a linear fashion. 
• They proceed from the initial information to the 

solution. 
 
These textbook solutions, which are often mirrored 
by instructors in the classroom, are examples of a 
phenomenon that can be called �forward-chaining� or 
�forward-working�. They are examples of how routine 
exercises are worked by individuals with many years 
of experience with similar tasks. However, they have 
little, if any, similarity to the approach successful 
problem solvers use when they encounter novel 
problems.  
 
As Herron once noted:7  

“The solutions given by authors in textbooks 
bear little resemblance to what experts do when 
they work unfamiliar problems. (Textbook 
solutions ... describe the most efficient pathway 
to a solution and probably represent how an 
expert who solves such problems routinely would 
approach the task.)” 

Herron and coworkers have argued that:8 

“... [textbook] examples must convey to the 

students an unrealistic idea about how problems 
are actually attacked. The examples provide no 
indication of the false starts, dead ends, and 
illogical attempts that characterize problem 
solving in its early stages, nor do they reveal the 
substantial time and effort expended to construct 
a useful representation of a problem before the 
systematic solution shown in examples is 
possible.” 

 
Instead of comparing the work of experts working on 
routine exercises with novices struggling with novel 
problems, we have chosen a different duality. We 
prefer contrasting the work of successful problem 
solvers (of any age) with the behavior of those who 
are less successful when these individuals encounter 
problems that are outside of their area of expertise. 
 
Models of problem solving 
One of the goals of our work is the development of a 
model of problem solving that has two characteristics. 
First, and foremost, it must fit our experimental data 
from interviews with successful problem solvers 
working on what is, for them, a novel problem. 
Second, it must be �teachable�; it must be a model 
that can be given to students that can improve their 
problem solving performance in chemistry. 
 
Let�s therefore look at several models of problem 
solving that have been proposed, starting with Polya's 
model that consists of four stages:9 

• Understand the problem 
• Devise a plan 
• Carry out the plan 
• Look back 
 
This model makes sense. It seems logical that we 
would start by understanding the problem, then 
devising a plan, then carrying out the plan, and then 
looking back to check our work and consolidate our 
gains. 
 
Unfortunately, Polya�s model is not consistent with 
our work. To try to convince the reader of this, 
consider the following problem which is based on the 
experimental data collected when one of the first 
xenon fluoride compounds was analyzed.10 

A sample of a compound of xenon and fluorine 
was confined in a bulb with a pressure of 24 torr. 
Hydrogen was added to the bulb until the 
pressure was 96 torr. Passage of an electric spark 
through the mixture produced Xe and HF. After 
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the HF was removed by reaction with solid KOH, 
the final pressure of xenon and unreacted 
hydrogen in the bulb was 48 torr. What is the 
empirical formula of the xenon fluoride in the 
original sample?  

 
We�ve given this problem to practicing chemists who 
do not teach general chemistry. They inevitably get 
the correct answer, but analysis of what they say 
when we ask them to work this problem out loud 
suggests that they do not follow the four stages of 
Polya�s model. Indeed, a common comment heard 
when they finally get to the answer � XeF4 � is: 
�Oh, its an empirical formula problem!� In other 
words, our experience with this problem � like the 
�two trains� problem cited earlier � suggests that the 
process of problem solving is over when one gets to 
the point that they understand the problem. 
 
Several other models of problem solving that are 
logical extensions of Polya�s model have been 
discussed elsewhere.11 They all have the disadvantage 
of not being consistent with the patterns we�ve 
observed for successful problem solvers working on 
novel problems. Let�s therefore turn to a model 
proposed by Alex Johnstone and co-workers.12 This 
model assumes that each learner has a working-
memory capacity (X) and that each problem has a 
working-memory demand (Z), which is defined as the 
maximum number of steps activated by the least able 
individual. 
 
The Johnstone-El Banna model assumes that when 
the working-memory capacity of the individual is 
equal to or larger than the demand on working 
memory (X ≥ Z), we have a necessary, but not 
sufficient, condition for success. It isn�t sufficient 
because success also depends on prior knowledge; on 
whether the prior knowledge is easily accessible; on 
the student�s motivation (inclination, interest, etc.); 
and so on. 
 
This model assumes that students won�t be successful 
when the demand on working memory exceeds the 
capacity of working memory (Z > X), unless the 
student can organize the demand on working memory 
so that it is smaller than his or her working-memory 
capacity. Johnstone and co-workers note that when 
the demand of the problem exceeds capacity, there is 
a sharp drop in performance. But, some students 
(≈10%) seem to be able to solve problems for which 
the demand exceeds capacity (Z > X) because of 
chunking devices that reduce the demand on working 

memory. 
 
Let�s assume, for the moment, that the Johnstone-El-
Banna model is correct when it is applied to 
situations that meet the six criteria proposed by 
Tsaparlis.13 Furthermore, let�s assume that Niaz is 
correct when he concludes that: �Teachers can 
facilitate success by decreasing the amount of 
information required for processing, and thereby 
avoiding working memory overload�.14 Now what? 
From the perspective of this model, there isn�t much 
we can do to improve student performance in our 
classes � other than helping them learn how to 
�chunk� information. We simply have to accept the 
limitations our students bring to the classroom, and 
conclude that the only way we can improve their 
performance is to lower the intellectual rigor of the 
tasks we give them.  
 
We believe that we can do more than this. Based on 
research on problem solving in mathematics, 
Wheatley proposed an anarchistic model of problem 
solving that describes what successful problem 
solvers do when they work on novel problems.6 As 
noted most recently by Calimsiz,15 this model is 
consistent with the results of our problem-solving 
interviews.  
 
An Anarchistic Model of Problem Solving  
 
• Read the problem 
• Now read the problem again 
• Write down what you hope is the relevant 

information 
• Draw a picture, make a list, or write an equation 

or formula to help you begin to understand the 
problem 

• Try something 
• Try something else 
• See where this gets you 
• Read the problem again 
• Try something else 
• See where this gets you 
• Test intermediate results to see whether you are 

making any progress toward an answer 
• Read the problem again 
• When appropriate, strike your forehead and say, 

�son of a ...� 
• Write down �an� answer (not necessarily �the 

answer�) 
• Test the answer to see if it makes sense 
• Start over if you have to, celebrate if you don't 
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“Draw a Picture” 
There are several stages in this model that deserve 
explicit attention. In the �two trains� problem, we saw 
the role that a drawing that is annotated with relevant 
information can play in solving a novel problem. 
We�ve also seen, in the calculation of the molarity of 
the acetic acid solution, that drawings aren�t done 
when people encounter a routine exercise.  
 
Over the years, several of the author�s colleagues 
have noted how difficult it is to get their students to 
�draw something� while working on problems in 
organic chemistry. We�ve encountered a similar 
resistance among juniors taking physical chemistry, 
often because they can�t visualize the system they are 
working with.  
 
In a study of problem solving by graduate students 
and early career faculty within the context of 
combined spectra interpretation, Cartrette16 noted that 
successful problem solvers in this study were much 
more likely to draw out molecular fragments as they 
were deduced in the problem solving process � in 
other words, to �draw something.� 
 
Our experience suggests that one cannot get students 
to draw a picture as a routine part of their problem 
solving process by telling them that they should do 
this.  We�ve found that students are more receptive to 
including this step when we tell them that this is 
something that we do.  
 
“Try Something” 
We�ve often described the steps �try something� and 
�try something else� as �playing with the problem�. 
Unfortunately, far too many of our students � 
particularly those who are struggling with the course 
� believe you can�t �play� with a problem. They 
believe that �trial and error� is not a legitimate 
strategy for problem solving � often because they 
haven�t seen any of THEIR instructors use this 
strategy in class. This is unfortunate because trial and 
error seems to be one of the most powerful strategies 
that our successful problem solvers own. 
 
There is abundant evidence in our data that successful 
problem solvers routinely encounter a cue during 
problem solving that causes them to ask: Am I getting 
anywhere? Many beginners forget to do this. They 
exhibit a �garden-path syndrome�, working the 
problem the way they might walk through a garden � 
smelling the roses along the way, but not noticing that 

they aren�t getting anywhere. Successful problem 
solvers tend to start over when they find that they 
aren�t making any progress toward the answer; 
beginners often fail to do this.  
 
“Does the Answer Make Sense?” 
The penultimate step in this model is particularly 
important. We have found that beginners seldom test 
their answers to see if they make sense for several 
reasons. First, they�ve never seen anyone do this 
when they�ve watched their instructors work out the 
solutions to tasks that are exercises for the instructors. 
Second, they are seldom given the information they 
would need to do this. 
 
Whenever we think about the penultimate stage in 
this model we are reminded of the phenomenon 
known as a Fermi calculation or Fermi estimate. 
Enrico Fermi had a reputation for asking students at 
the University of Chicago questions that seemed 
impossible and then showing them how to use 
common knowledge to estimate the answer. (For our 
purposes, �to test the answer to see if it makes 
sense.�)  
 
The most oft-cited example of a Fermi calculation 
involves asking students to estimate the number of 
piano tuners in Chicago. One starts with an estimate 
of the population of Chicago, the fraction of this 
population who are likely to own pianos, the 
frequency with which pianos are tuned, and so on.  
 
Fermi calculations can be relatively simple, such as 
estimating how long it would take to eat your weight 
in food (about a month), or how much trash produced 
in a typical house each year (about 1000 pounds). But 
they can also be considerably more challenging, such 
as estimating the fraction of the continental U.S. 
covered by automobiles. 
 
The Difference Between Exercises and Problems 
 
In summary, we would like to argue that Polya�s 
model is an ideal approach to working a routine 
exercise. One reads the question, understands the 
task, devises a plan, and so on. We might go so far as 
to argue that one of the characteristic tests of whether 
a task is an exercise is to ask: How is the solution 
found? Exercises are worked in a linear, forward-
chaining, rational manner. Our model suggests that 
problem solving is cyclic, reflective, and can appear 
irrational. Experts who watch students struggle with a 
problem are tempted to intervene; to show the 
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�correct� way of obtaining the answer. This makes the 
expert feel good, but it doesn't necessarily help the 
individual who is struggling with the problem for the 
first time. 
 
Our experience suggests that the anarchistic model 
can be taught to students and that students who pick 
up this approach to problem solving often do better in 
the course than those who do not. Teaching this 
model involves presenting it to the students at the 
beginning of the semester and then explicitly using it, 
over and over again, throughout the course.  
 
We�ve found that this model is equally productive in 
introductory courses taken by freshman from the 
various schools that require a year of general 
chemistry and in physical chemistry courses taken by 
junior chemistry and biology majors. In a recent study 
of sophomores taking a year-long course in organic 
chemistry, Calimsiz15 found that this model most 
closely reflected the process by which successful 
students worked problems that asked them to propose 
a set of reactions that would transform a given 
starting material into a given product. 
 
Implications for teaching 
 
For some time, we�ve been recommending that 
instructors who teach introductory chemistry courses 
draw a picture for every task they work in class from 
the beginning of the Fall semester until the end of the 
Spring semester. We find that when this is done, the 
number of �C�-s in the class goes down and the 
number of �B�-s and �A�-s goes up. An example of 
this phenomenon is shown below: 

Question: Use the Ksp for calcium fluoride to 
calculate its solubility in grams per liter. 

 
Figure 4 contains the information extracted from the 
statement of the problem, as well as information that 

is derived while one proceeds toward the answer. Part 
of its power comes from the fact that it is a symbolic 
representation. Part comes from the fact that it is a 
second representation, which often brings to the 
students� attention details that are not always as 
obvious as we might expect. (Such as the fact that 
there are twice as many F� ions as Ca2+ ions in the 
solution.) It is also important to recognize that this 
diagram is a chunking device, as called for in the 
Johnstone-El-Banna model. It brings together 
information, thereby reducing the demand on working 
memory. 
 
In a prior publication in this journal17 we looked at 
the implications of this idea when it is applied to the 
kind of descriptive chemistry one finds in modules on 
inorganic chemistry. The example we used in that 
paper was based on years of watching what happens 
when TA�s try to explain the reaction between the 
triiodide ion and thiosulfate.  
 
I3-(aq)  + 2S2O32-(aq) 3 I-(aq) + S4O62-(aq)   
 
Transfer of learning 
 
Gage and Berliner argue that �the transfer of skills, 
knowledge, learning strategies, etc., is a fundamental 
goal of all levels of education�.18  Transfer has been 
defined as the �use of information or skills 
characteristic of one domain or context in some new 
domain or context�.19 Transfer can occur from one 
problem to another within a course; from one class to 
another; from one year to another; from school to 
home; and from school to work.20  
 
For years, one of the Author�s goals has been 
building problem solving skills that transfer to other 
courses and, eventually, to improvements in on-the-
job performance. It is for that reason that he includes 

Figure 4 
 

  Ca2+      F-    F- 
               Ca2+    
F- F- F- 
     Ca2+       F- 

[Ca2+] = CCaF2 

[F-] = 2CCaF2 

Cs = 2.2 x 10-4M 

Solubility = 0.017 g CaF2 L-1 

CaF2 (s) Ksp = 4.0 x 10-11 
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Figure 5 
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questions such as the following in his textbooks 
because he believes that these questions provide the 
basis for practising the anarchistic model of problem 
solving he incorporates into his classes. 

In 1773 Benjamin Franklin observed that one 
teaspoon of oil spilled on a pond near London 
spread out to form a film that covered an area of 
about 22,000 square feet.  If a teaspoon of oil has 
a volume of about 5 cm3 and the oil spread out to 
form a film roughly 1 molecule tall, what is the 
average height of an oil molecule?4 

 
It is also the reason that he collects questions such as 
the following, which was proposed for a course on 
environmental problem solving. 

In a remote area in Nepal, the concentration of 
aluminium in outdoor air at ground level 
averages 9.4 x 10-8 µg/cm3. (It is much higher 
inside the Sherpa dwellings because of wood and 
yak dung burning). At the same site, the Al 
concentration in the top 1 cm of fresh snow 
averages 0.12 µg/g, while in the top 1 cm of 
three-day-old snow it averages 0.20 µg/g. 
Calculate the average deposition velocity of the 
Al falling to the ground when it is not snowing.21 
 

  
For many years, a family of problems has circulated 
that were the primary concern of individuals doing 
research on problem solving and the limited number 
of people who collected puzzles for shear intellectual 
excitement. Consider the following problem, for 
example (Figure 5). 
 

Each of the following cards has a letter on one 
side and a number on the other. Which card or 
cards would you have to turn over in order to 
find out whether the following rule is true or 
false: If a card has a vowel on one side, it has an 
even number on the other side.22 

 
It is possible that someone might get the answer to 
this question without creating one of the drawings 
discussed in this paper, but it is not likely. Most 
people assume that the card with the �A� on it must be 
turned over, and they are correct. What is surprising 

is the relatively small number of people who assume 
that one also has to turn over the card with the �7� on 
it, to make sure that there is no vowel on the other 
side. The author is convinced that people who get this 
wrong would do better if they didn�t try to solve the 
problem in their heads. If they were forced to keep 
records of their thought process while they thought 
about each card, one at a time; if they were forced to 
draw a picture or make a list to help them understand 
the problem. 
 
This question surfaced recently because it is being 
used by companies such as Microsoft as part of the 
process by which potential employees are screened.23 
Other questions that are asked during these interviews 
include: 

There are three ants at the three corners of a 
regular triangle. Each ant starts moving in a 
straight line toward another, randomly chosen 
corner. What is the probability that none of the 
ants collide? 

 
Once again, it might be possible to get the right 
answer (one in four) without a drawing, but most 
people would have to start by translating the problem 
into a drawing.  
 
One of the more popular questions in the Microsoft 
collection is the following: 

Suppose you have eight billiard balls (or jars of 
pills, etc.). One of them is defective � it weighs 
more than the others. How do you tell, using a 
two-pan balance, which ball is defective in two 
weighings? 
 

Many people to whom we�ve given this question 
conclude that either it can�t be done or at least they 
can�t do it. Everyone we�ve watched get the right 
answer has taken the approach of �playing with the 
problem�. If you start by trying to put four balls on 
each pan of the balance you find that it can�t be done 
in two weighings. So try putting three balls on each 
pan. If the pans balance, the defective ball is among 
the two you didn�t weigh, and you can determine 
which one it is in a single weighing. If the pans don�t 
balance, select the three balls that are heavier. Now 
try something else. Pick two of these three balls and 
put one of them on each pan. If one is heavier, it is 
the defective one. If the pans are in balance, then the 
ball that wasn�t chosen must be defective. 
 
The anarchistic model of problem solving presented 
in this paper was based on interview data on 
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mathematically oriented problems. As we have 
continued our work, we�ve found that it applies just 
as well to non-mathematical problems such as organic 
synthesis or spectral interpretation. More recently, 
we�ve found that it applies to problems that extend 
beyond the domain of chemistry, and might therefore 
involve skills that are worth building and transferring. 
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