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Abstract 
Chemistry undergraduates are frequently guilty of faulty or inefficient practices in performing physicochemical 
calculations, possibly leading to incorrect answers, both in the processing of laboratory data and in answers to 
tutorial/examination questions. The purpose of this article is to draw attention to some of the more common 
malpractices, but more importantly, to provide a framework for good practice in teaching students how to 
perform chemical calculations. 

Introduction 

The purpose of this article is to draw attention to 
improper or inefficient procedures often 
encountered in chemical calculations performed by 
higher education students, as perceived by a 
lecturer with over 40 years of physical chemistry 
teaching experience at university level. Sometimes 
these malpractices are encountered in student 
answers to isolated problems (perhaps in 
examinations or tutorials) but more commonly, they 
are encountered in the processing of laboratory 
data. The author wishes to identify a number of 
standard approaches that should help to reduce the 
confusion of students, and might also provide 
guidelines that could be followed by instructors and 
authors of textbooks. 

Quantity Calculus vs. Measure Calculus 

Before discussing some specific malpractices, it is 
appropriate to outline the general algebraic system 
that is at the heart of advanced modern calculation 
techniques in physical science and engineering. 
This is based upon the concept that natural 
relationships exist between quantities and not 
between measures, the latter being defined by the 
general relationship: quantity = measure × unit; (for 
the special case of dimensionless quantities, the 
unit is 1). For example, in the statement: mass = 2 
kg (× is implicit), mass is a quantity, kg is a unit of 
that quantity and 2 is the corresponding measure; 
whereas this mass is invariant, the measure and the 
unit can be varied in tandem: 2 kg = 2 × 103 g = 2 × 
106 mg = etc. A simple invariant relationship in 
quantities is density = mass/volume, but there is no 
universal relationship between measures of these 
quantities; individual relationships will depend on 
the choice of units for the three quantities involved. 
It is this invariance that is responsible for the 
widespread adoption of the algebraic system known 

as Quantity Calculus (or quantity algebra),1 a 
system pioneered by people such as  E. A. 
Guggenheim,2 G. N. Copley3 and M. L. 
McGlashan.4 In this system, symbols represent 
quantities; in the example just given, density, mass 
and volume might be symbolised ρ, m and V; m 
will not be (for example) the number of kg in the 
mass (equivalent to saying that mass = m kg).  

The method of quantity calculus contrasts with that 
traditionally used in pure mathematics, which is 
normally concerned with pure numbers and their 
algebraic representatives. However, even when 
mathematicians deal with non-dimensionless 
quantities, it has been standard practice to let 
measures, rather than quantities, be represented by 
algebraic symbols. To illustrate, it was not 
uncommon to start a problem in the following sort 
of way: “Let the length of the rod be l cm …” or 
“Let Mr Smith be aged x years and Mr Jones be 
aged y years…”. In these cases, the symbols 
represent measures; the algebra resulting from such 
symbolism could legitimately be called ’measure 
calculus‘. It could be argued that a measure is a 
dimensionless quantity defined as the ratio of a 
general quantity and a ’standard‘ value of that 
quantity. For example, we might have a pressure 
ratio p/pc or p/po (p = pressure, pc = critical pressure 
for the specific substance, po is a general standard 
pressure such as 100 kPa or 1 atm = 101.325 kPa). 
The first ratio, called reduced pressure, is 
commonly symbolised pr. One could introduce a 
single symbol for the second, P perhaps, and if po is 
say 1 atm, then p = P atm and P, formally a 
measure, has become a special quantity symbol. If 
this argument is valid, we are effectively stating 
that quantity calculus includes measure calculus as 
a special case, but the reverse is certainly not true, 
i.e., measure calculus is standalone. There is one
important situation where relationships are
ultimately required in terms of measures (whether
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written as a quantity/unit ratio or as a single 
symbol) and this is when a computer (capable of 
processing only numbers) is to be used. The 
conversion of a quantity formula to the requisite 
measure formula can cause problems for students 
and will be considered towards the end of this 
article. The majority of it will, however, be 
concerned with faulty or illogical practices in using 
algebraic quantity formulae. 
 
Examples of Malpractice 
 
Let us now consider these practices. Here, the 
emphasis will often be made on the correct practice 
with the implication that such practice is commonly 
not followed. 
 
Avoidance of unnecessary repetition  
Firstly, one ought to say that in simple calculations, 
such as those encountered in secondary education, 
one can completely avoid algebra. To take a simple 
case of a volumetric analysis calculation, one could 
proceed as follows (or something like this), using a 
specific example.i 
NaOH + HCl → NaCl + H2O; known [HCl] = 
0.1234 mol dm-3; HCl in burette 
Pipetted volume of NaOH = 25.00 cm3; 
experimental (mean) titre = 23.25 cm3 
Calculation: Amount of substance of HCl = 0.1234 
mol dm-3 × 23.25 cm3 = 0.1234 mol dm-3 × 
(23.25/1000) dm3 = 0.002869 mol 
So amount of substance of NaOH = 0.002869 mol 
[NaOH] = 0.002869 mol/25.00 cm3 = 0.002869 × 
1000 mol /25.00 dm3 = 0.1148 mol dm-3 
 
In pre-HE education, there is admittedly substantial 
advantage in this kind of procedure. Students often 
say something like “We are encouraged not to 
remember formulas that we do not understand, but 
to proceed stepwise through the calculation without 
introducing symbols”. There are common student 
faults with this kind of procedure, in connection 
with (i) incorrect names for quantities, (ii) non-
inclusion of units, and (iii) insignificant figures; 
these points will be covered later. 
 
Objections arise to this procedure when an identical 
analysis has to be applied to several NaOH 
solutions, using the same pipette and the same HCl 
solution—the extreme situation would arise if a 
large number of titrations were required over a time 
range when NaOH is consumed in a kinetic study. 
Sensibly, in cases like this, one must exploit the 
constancy of both the pipette volume and the HCl 
concentration; as a consequence, one can deduce 
the generic relationship: [NaOH] = (0.1234 mol 

                                                 
i In what follows, there is no specific objection to using 
M as a synonym of mol dm–3, or litre—safest symbol L 
— and mL instead of dm3 and cm3. 

dm–3/5.00 cm3) × titre, i.e., [NaOH]/mol dm–3 = 
0.00494 × titre/cm3. This formula has but one 
independent variable, the titre. One would then 
tabulate titre/cm3 and [NaOH]/mol dm–3 alongside 
the NaOH sample number/label or time/min, as 
appropriate. In the case of following the titre (or 
indeed any other quantity proportional or linearly 
related to concentration) as a function of reaction 
time, it may be wasteful of effort to convert each 
individual titre to a concentration when graphical 
processing of data is to be used. This point will be 
discussed again in the section concerned with 
plotting graphs, below. 
 
Definition of quantity symbols 
A statement of a quantity formula should always be 
accompanied by the definition of its symbols, even 
if these have a traditional meaning, like V 
commonly signifying volume; quantity symbols are 
recommended, but not fixed, by bodies such as the 
International Organization for Standardization 
(ISO),5 the International Union of Pure and Applied 
Chemistry (IUPAC)6 and the International Union of 
Pure and Applied Physics (IUPAP).7 An important 
point is that one should not include units in such 
definitions, e.g., ‘V = volume’, NOT ‘V = volume 
(m3)’. The choice of unit for the quantity is 
completely irrelevant—see below. Needless to say, 
quantity names should be modern ones, e.g., 
‘amount of substance’ or ‘chemical amount’, NOT 
‘number of moles’ or just ‘moles’ (equivalent to 
miscalling ‘mass’ ‘number of grams’ or ‘grams’), 
Avogadro constant (for 6.022 × 1023 mol–1) and 

NOT Avogadro number—incidentally, the addition 
of the possessive: ‘s’ after a person’s name is not 
current scientific practice.  
 
The need to substitute quantity symbols with both 
measures and units 
Substitution of values into a quantity formula 
requires that both the measure and the 
corresponding unit be inserted. To take a simple 
physical chemistry example, consider the perfect 
(or ideal) gas relationship V = nRT/p to be used to 
calculate gaseous volume V from pressure p, 
amount of substance n and thermodynamic 
(absolute) temperature T; R is the gas constant. It is 
essential to replace each of the right side symbols 
by both the measure AND corresponding unit; 
furthermore, the units should be there at all stages 
of the calculation—it is an option whether to keep 
each unit alongside its measure or to isolate the 
units in a composite unit term. Following this, one 
should handle the unit manipulation with the same 
care as the measure simplification; (if the 
relationship is wrong, unit manipulation will often 
reveal this). If the units are so-called coherent—SI 
units for example—they will ‘cancel’ nicely and, 
using this same example, give a simple, 
recognisable unit of volume. But, even if they are 
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not coherent, one will still get the correct answer 
(because the rules of substitution have been 
followed), e.g., one might obtain an answer 1234 J 
atm–1 for the volume and if (as likely) that unit is 
not liked, it can be converted into m3 by use of atm 
= 101 325 Pa and J Pa–-1 = m3. Unit prefixes can be 
manipulated in the same sort of way, e.g., the 
composite unit m3 cm–3 (produced as such perhaps 
in some calculation) can be reduced to a number as 
follows: m3 cm–3 = m3 (10–2 m)–3 = m3 × 10+6 m–3 = 
106. 
 
Use of proper functional arguments 
If a function (f), by its definition, has a non-
dimensionless argument [x in f(x)], then this 
requirement must be satisfied. Perhaps the 
commonest example of such a function in 
chemistry is the logarithm; one can take logarithms 
only of positive numbers. Physical scientists 
(textbook writers and, sadly, mathematicians who 
teach physical science students) should not pretend 
that terms, such as pH = –log10([H+]), ln(p) or ln(k) 
(where k is a rate constant) are meaningful. The 
following are all right: pH = –log10([H+]/mol dm–3) 
(/ means ’divided by‘), ln(p/atm), ln(p/po) (po = a 
chosen standard pressure), ln(p1/p2), ln(pr) (pr = a 
relative pressure, which could be p/po or even 
p/atm). The indefinite integral of 1/p is ln(kp) with 
k a positive integration constant with dimension of 
reciprocal pressure. The (strictly meaningless) 
differential coefficient dln(p)/dT is correctly (but 
cumbersomely) written dln(kp)/dT; however, it is 
also correctly (and simply) written (1/p) dp/dT. 
 
Dimensional homogeneity in expressions and 
equations 
Additive/subtractive expressions, and equations 
generally, should be ’dimensionally homogeneous‘. 
For example, in connection with the thermal 
expansion of a solid, the following are all examples 
of correct forms: 
V/cm3 = 1.234 + 2.345 × 10–4 t/oC (t = Celsius 
temperature)  
V = 1.234 cm3 + 2.345 × 10–4 cm3 oC–1 t 

V = (1.234 + 2.345 × 10–4 t/oC) cm3 

but the following are improper: 
 V = 1.234 + 2.345 × 10–4 t 
V/cm3 = 1.234 + 2.345 × 10–4 t  
 
Modern tabulation 
Tabulation, for the sake of conciseness, is of 
numbers and the names of columns and rows 
should reflect this. For example, we might give a 
set of volumes as 
V/cm3 1.234  2.456  3.789… 
not V(in cm3) …  or   V(cm3) … 
Formally, V 1.234 cm3   2.456 cm3   3.789 cm3…  
is correct but clearly cumbersome; transfer of the 
common unit once and for all to the row designator 

makes obvious sense. The same point applies to a 
repetitive power-of-ten multiplier;  
V/m3 1.234 × 10–3    2.456 × 10–3    3.789 × 10–3…  
is (deliberately avoiding the prefixes milli and centi 
to make the point) more concisely written as 
V/10–3 m3 1.234    2.456    3.789… 
or as 103 V/m3   1.234    2.456    3.789…  
In this latter case, the first table entry 1.234 is 
exactly what the row name says it is, viz., 10+3 V/m3  
(author’s + sign emphasis) so that V = 1.234 × 10–3 

m3.  Incidentally, V/cm3 can alternatively be written 
V × cm–3 or just V cm–3, but the quotient format is 
usually regarded as clearer. 
 
Plotting graphs 
Just as one tabulates numbers, so one also plots 
numbers8 (just as mathematicians do when symbols 
such as x and y represent numbers). However, this 
is only when we have discrete plot points, 
corresponding to measured data, say, a set of 
temperatures and corresponding volumes where we 
might plot V/cm3 against T/K (or perhaps against 
T/kK ≡ T/1000 K) with axis tick marks properly 
labelled as numbers.ii  It must necessarily follow 
that graphical intercepts, slopes and areas must also 
be numbers and, furthermore, the algebraic 
equivalents of these parameters must reflect this. 
To exemplify (also bringing in the point about 
proper logarithmic arguments): in the field of 
reaction kinetics, one encounters the Arrhenius 
(quantity) relationship k = A exp(–E/RT) [k = a rate 
constant (here exemplified by a first order one with 
dimension [TIME–1]), A = pre-exponential factor, E 
= activation energy, T = thermodynamic (or 
absolute) temperature]. Suppose, one has a set of 
experimental values for k and corresponding T and 
one wishes to determine A and E by graphical 
means. The proper logical procedure, starting with 
division by a sensible unit of k, is as follows: 
k/min–1 = (A/min–1) exp(–E/RT) 
ln(k/min–1) = ln(A/min–1) – E/RT = ln(A/min–1) – 
E/(R × 1000 K)  × 1000 K/T 
Then plot the number ln(k/min–1) against the 
(conveniently sized) number 1000 K/T  to give a 
straight line of slope –E/(R × 1000 K) and intercept 
ln(A/min–1) from which E can be obtained by 
multiplying the slope by –R × 1000 K and from 
which A can be obtained by taking the natural 
antilogarithm of the intercept and then multiplying 
this by min–1. If axes are labelled as numbers, it 
would be wrong to say that ln(k)— meaningless 
anyway—is plotted against 1/T and the slope is –
E/R. 
 

                                                 
ii Formally, there is nothing improper in plotting in a 
quantity space, V against T with tick marks tediously 
labelled as quantities (1 cm3, 2 cm3, 3 cm3, …, 290 K, 
300 K, 310 K, … ). 
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However, one must distinguish here such number 
plots from so-called ’sketch graphs‘ where one 
merely wants to show with no experimental points, 
for example, the general trend of V (for a solid, say) 
against T. Here one plots quantities V and T, with 
common implicit assumptions that the axes are 
linear and cross at the origin. 
 
It is now appropriate to return to the point deferred 
earlier, concerning the optimum processing of titre 
vs time data in a kinetics experiment, avoiding the 
conversion of each individual HCl titre to a NaOH 
concentration. Suppose that one wishes to test 
whether the process is first order in NaOH (other 
reactants being in excess and essentially remaining 
at constant concentration).  The equation to be 
tested is then ln([NaOH]/[NaOH]o]) = –kt 
{subscript o indicates a value at zero time, k = first 
order rate constant, t = time}. The first point to note 
is that [NaOH]o is a constant and division of each 
[NaOH] by that constant can easily be avoided, but 
one can go further.  Since [NaOH] ∝  titre, T, the 
equation to be tested can be transformed as follows:  
ln(T/To) = –kt;   ln(T/cm3) = ln(To/cm3) – k × min 
× t/min 
Plot ln(T/cm3) against t/min and if the order is 1 
(and the reaction has been followed to high degree 
of completion), the graph will be a straight line of 
slope –k × min from which k = –slope × min–1 can 
be obtained.  Similar arguments will apply to the 
testing of other kinds of rate equation, i.e., not first 
order, except that there will then be need for a final 
single use of the proportionality constant in 
[NaOH] ∝  titre when converting a graphical slope 
into a rate constant. If a product rather than a 
reactant is being monitored, again similar 
arguments may be used, but there will be a further 
need to obtain and involve a titre at ’infinite‘ time. 
 
Unit conversion 
Students often find unit conversion difficult.  To 
take a simple example, suppose one had a 
concentration of 1.234 mol dm–3 and wanted to 
convert this into so many mol m–3. Students would 
often argue (correctly) as follows: 1 m3 is 1000 
times as big as 1 dm3, so this would require a 1000 
times as much amount of substance, i.e., 1234 mol, 
so 1.234 mol dm–3 = 1234 mol m–3. But the 
following (taken in more steps than is conventional 
for emphasis) is simpler and more generally 
applicable: 1.234 mol dm–3 = 1.234 mol (10–1 m)–3  
= 1.234 × (10–1)–3 mol m–3 = 1.234 × 10+3 mol m–3 = 
1234 mol m–3. 
 
Significant figures 
It is very common for students to create far too 
many figures in a calculation. A simple rule in a 
multiplicative/divisive calculation is to give the 
answer to the same relative error (roughly the same 

number of significant figures, but this can be wrong 
by ±1) as the least accurate datum in the 
calculation. Additive/subtractive calculations 
should give an answer to the same number of 
decimal places as the least precise datum, so that 
(1.15 – 0.1234) cm3 = 1.03 cm3, but 1(exactly) – 
0.1234 = 0.8766.  As a rough guide, taking a 
logarithm of a number with n significant figures 
would produce n decimal places. One can do better 
than this by applying statistical considerations, of 
course, (‘cumulation of errors’), and including ‘± e’ 
after the number (preferably, stating whether e is a 
standard error of the mean or a 95% confidence 
deviation or whatever). In this connection, a simple 
rule of thumb is to give e to one figure (or possibly 
two if the first figure is a 1) and then round the 
mean to the same number of decimal places. If the 
last decimal place is a zero, it should be present; the 
same point applies to the primary data, i.e., 
significant terminal zeros should be included. A 
related matter arises when the number of significant 
figures is less than the number of figures preceding 
the decimal point (or decimal symbol); 1.234 × 105 
is clear in significant figures but 12340 is 
ambiguous. On a minor issue, it is the author’s 
opinion, that for measures below 1, an initial zero 
before the decimal point is generally clearer than 
when that zero is omitted.  Two other small points 
agreed internationally: (1) a comma should not be 
used to space sets of three digits (either side of a 
decimal symbol)—when there are more than four 
digits, one  can  use  a  space  instead,  e.g., 12 
345.123 45; (2) the comma can be used instead of a 
stop for a decimal symbol—this is standard 
European (but not British) practice 
 
Use of computers 
Although the previous emphasis has been on the 
use of algebraic symbols as quantity 
representatives, one may have to consider an 
effective deviation from this if data are to be 
processed by computers, which cannot (generally) 
handle units. In this context, it may be that, for 
example, instead of c standing for concentration, it 
may have to stand for concentration/mol dm–3; 
strictly speaking c would be the name of a register 
containing the number concentration/mol dm–3, a 
point more appreciated when one had to write a 
computer programme to perform the task and less 
appreciated in the present age of general computer 
packages. As a precursor to computer processing, 
some manipulation of the quantity formula to 
involve units is necessary. 
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This will be illustrated by the calculation of a gas 
volume from the perfect gas equation.  Suppose that 
one wanted to (i) calculate the number of cm3 in the 
volume, (ii) input the constant R as the number of J 
K–1 mol–1 in this quantity, and (ii) input information 
on quantities n, T and p as the number of moles 
(symbol mol), the number of K and the number of 
atm, respectively. Then, we would have to 
manipulate the original equation pV = nRT as 
follows: 
 

and then assign each measure (= quantity/unit) to a 
particular computer register (sensibly, given the 
same name as the quantity, of course). Naturally, if 
the units involved are coherent, e.g., (unprefixed) 
SI units, there is no multiplying factor like the 
9.869 above. 
 
Unit names and symbols 
One should use the correct (mandatory) symbols for 
units, e.g., s not sec for seconds, h not hr for hour, l 
or L not lit for litres (L better because of possible 
confusion of l with the digit 1), atm not atmos for 
atmospheres. Generally, unit names based upon 
scientists’ names have an initial lower case letter, 
e.g. joule, but the corresponding symbols have a 
capital letter, e.g. J; otherwise the symbol is all 
lower case—litre is the exception to the rule. Unit 
symbols (which in print are roman, unlike italic 
symbols for quantities in print) should not be 
pluralised or followed by an abbreviation point. Of 
course, there is a severe font problem when writing 
on paper or a blackboard; italicisation can be 
simulated by underlining but this is tedious—
students could, for example, confuse K (for kelvin) 
with K (for equilibrium constant). There should be 
a space between a measure and a unit and between 
components of a composite unit; compare ms–1 = 
1/millisecond and m s–1 = metre per second.  
Although a strong supporter of SI units, the author 
does not believe that students should not use other 
units. 
 

Use of the solidus 
A small point arises in connection with the use of 
the solidus (/) for division in quantity or unit 
expressions. The modern convention is that 
everything that follows the solidus (unless 
bracketing indicates otherwise) is part of the 
divisor. Thus a/bc means a divided by the product 
of b and c; in other words multiplication has 
priority over division; J/K mol is the same as J K–1 
mol–1—a second solidus after K would be 
redundant. This contrasts with the usage in 

computer programming coding, 
which is a different matter. 
However, it is better to add extra 
bracketing if there is any danger 
of confusion.  
 
Conclusion 
 
It is my view that students (like 
us!) must use completely 
rigorous and consistent methods 
for performing chemical 
calculations. Whilst this might 
seem to necessitate extensive 
defining of rules and procedures, 
it is an essential part of gaining 
an education in chemistry if our 

students are to understand their subject properly 
and are to use their knowledge as professional 
chemists. Although many of the principles 
underpinning this article have been expounded by 
others, my experience, and that of virtually all my 
colleagues, is that students receive conflicting 
advice from lecturers, tutors, demonstrators and 
textbooks. Also, it is widely felt that students come 
to university with a weaker grasp of physics and 
mathematics than (say) 20 years ago. University 
chemical educators must be absolutely consistent in 
the way they expect students to manipulate data if 
they are to grasp the essential principles, and I hope 
that the guidelines provided in this article will help 
both colleagues and students. 
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