University Chemistry Education

Title index

Title	Volume
	page
A problem based learning approach to analytical and applied chemistry	6 , 65
A simple and general method to draw resonance forms	7 , 33
Action Research: Overcoming the Sports Mentality Approach to	
Assessment/Evaluation	3 , 31
Addressing Key Skills in the Chemistry Curriculum: Structured Learning Packages	2 , 45
Administrators undermine degrees	6 , 37
An Interactive Working Group in Chemistry used as a Diagnostic Tool for Problematic Study Styles	8 , 1
And Some Fell on Good Ground	1, 8
Assessment in chemistry and the role of examinations	8 , 52
Assessment of Chemistry Degrees	3 , 64
Assessment Of Chemistry Degrees (letter)	4 , 37
Assessment Of Chemistry Degrees (reply)	4 , 37
Assessment of CIT Courses	3 , 38
Calculating oxidation numbers of carbon in organic compounds and balancing equations	
of organic redox reactions	6 , 36
Can Problem Solving Be Taught?	5, 69
Changing the Nature of Physical Chemistry Practical Work	3 , 59
Chemical Education Research: Where From Here?	4 , 32
Chemical education: theory and practice	6 , 39
Chemical Games to Improve Communication Ski11s	2 , 63
Chemistry Education for a Changing World	1 , 15
Chemistry Lessons for Universities?: a Review of Constructivist Ideas	4 , 63
Coaxing Chemists to Communicate	1 , 31
Communication: Computer Programs Which Respond To Learning Styles	3 , 68
Computer Simulations: Creating Opportunities for Science Writing	2 , 51
Conceptual understanding of electricity: galvanic and electrolytic cells	7 , 59
Conceptual understanding of electricity: Galvanic cells	8 , 24
Course-Questionnaires As A Research Tool	4 , 73
Creating Critical Chemists	1, 28
Critical Thinking	6 , 35
Crossing The Borders: Chemical Education Research And Teaching Practice	4 , 29
Customising and Networking Multimedia Resources	5 , 39
Developing Critical and Communication Skills in Undergraduates through Chemistry	1 , 1
Does Chemistry have a future?	6 , 13

Electronic Presentation of Lectures – Effect upon Student Performance	3 , 18
•	3 , 28
Evaluation of higher vs. lower-order cognitive skills-type examinations in chemistry:	,
implications for university in-class assessment and examinations	7 , 50
Evaluation Of Teaching And Learning: Matching Knowledge With Confidence	4 , 15
Exercises for chemists involving time management, judgement and initiative	3 , 52
Experience With A Random Questionnaire Generator In The Chemistry Laboratory And For Other Continuous Assessment	5, 9
Experimental Design – Can It Be Taught Or Learned?	5 , 74
Experimenting with undergraduate practicals	8 , 58
Generating Coursework Feedback for Large Groups of Students Using MS	5 , 1
Getting a Better Picture: Using Video to Improve the Presentation Skills of Chemistry	4 , 50
	8 , 40
Improving Students' Data Analysis Ski1ls in the Laboratory	2 , 37
	6 , 84
Independent Learning in an Introductory Module in Biological Chemistry: Use of	
	2,40
	4 , 58
	2 , 30
	4 , 12
Introduction To The Use Of The Chemical Literature: An Innovative Library Workbook	2 , 5
Is Peer Assisted Learning of Benefit to Undergraduate Chemists?	3 , 72
Is the mathematics problem recognised by the chemical industry?	6 ,17
Is Your Web Site Legal?	5, 89
Key Skills Development Support From Central Services	4 , 38
	3 , 1
Laboratory Work	2 , 35
	6 , 58
	7,13
	5, 90
	5, 90
	5 , 42
Malpractices in Chemical Calculations	7 , 27
	4 , 22
	4 , 54
▲	2 , 34
Old wine in new skins: Customising Linear Audio Cassettes into an Interactive	 , <i>J</i> T
	8 , 31
On The Need To Use The Gibbs' Phase Rule In The Treatment Of Heterogeneous Chemical Equilibria	5, 40

On the use of chemical demonstrations in lectures	6, 22
Orienteering in the Library	1, 5
Post-laboratory support using dedicated courseware	2 , 10
Pre-laboratory Support Using Dedicated Software	3 , 22
Preparing For The Chemistry Laboratory: An Internet Presentation And Assessment	
Tool	4 , 46
Preparing the Mind of the Learner	3 , 43
Preparing the Mind of the Learner – Part 2	5 , 52
Problem solving: the difference between what we do and what we tell students to do	7 , 37
Problems With Small Numbers	2 , 63
Promoting active learning through small group laboratory classes	6 , 28
Prospective teachers' conceptual understanding of electrochemistry: Galvanic and electrolytic cells	7 , 1
Quantity algebra (calculus) – some observations	7 , 58
Questionable questions	5,40
Raising the Status of Chemistry Education	8 , 13
Reflecting on Learning	2, 35
Reflecting on Learning	3 , 37
Reflecting on learning	3 , 76
Repeatability and reproducibility	6 , 89
Science And The Public: Teaching <i>About</i> Chemistry On University Courses	5 , 36
Skills Development and Practical Work in Chemistry	2 , 58
Small Numbers	3 , 37
Soleq: Tools And Tutorials For Studying Solution Equilibria	4 , 7
Some Thoughts Following 'Crossing the Borders'	4 , 37
Student Misconceptions Of The Language Of Error	5 , 16
Teaching Chemists to Communicate? Not My Job!	5, 80
Teaching Chemists To Think: From Parrots To Professionals	5, 62
Teaching errors? A case study of students learning about the analysis of data quality	6 , 1
Teaching experimental design	6, 35
Teaching Introductory Chemistry Using Concept Development Case Studies: Interactive And Inductive Learning	4 , 1
Teaching, Learning, and Computing	2 , 21
The Bologna Process and Chemistry Degrees in the UK	8 , 29
The Chemistry Quiz, a Tool for Reinforcement Learning	3 , 13
The classic HCl experiment: how long is the hydrogen–chlorine bond?	7 , 46
The Idea of a Closed Book IT Examination: a Novel Approach to assessing Chemistry Specific Information Technology	3, 8
The Mythical Dependence of Boiling Points on Molecular Mass	7, 35
The Sussex 'Degree By Thesis' In Retrospect	8 , 21
The Teaching of Basic Chemistry to University Foundation Students	2 , 55

The Use Of A Computer-Assisted Personalized Approach In A Large-Enrolment	
General Chemistry Course	4 , 39
Titration Formulae	2 , 63
Turkish chemistry undergraduate students' misunderstandings of Gibbs free energy	6 , 73
Undergraduate Students' Understanding of Enthalpy Change	3 , 46
Undergraduate students' understandings of entropy and Gibbs free energy	6 , 4
Using Case Studies to Develop Key Skills in Chemists: A Preliminary Account	2 , 16
Using Questions To Promote Active Learning In Lectures	5 , 24
Virtual Investigations: Ways to Accelerate Experience	1, 19
Who Is Asking the Question?	5 , 59
Why Lecture Demonstrations Are 'Exocharmic' For Both Students And	
Their Instructors	5 , 31
World Wide Web Publishing as a Basis for Student Projects	2 , 1