

Working with ratios: answers

Education in Chemistry January 2020 rsc.li/2r3j3RA

Working with shapes

Working with ratios in chemistry

```
1.

a) \frac{2}{5}

b) 2.08 g

c) \frac{5}{7}

d) \frac{5}{7} x mass of bronze = 10.2

So mass of bronze = 10.2 x \frac{7}{5} = 14.28 g
```

- 2.
- a) 0.78 g

b)

	Carbon	Hydrogen	Oxygen
Mass of element in g	0.585	0.195	0.78
Moles of element $\left(\frac{mass in g}{A_r}\right)$	0.04875 mol	0.195 mol	0.04875 mol
Simplest whole number ratio (divide each number	1	4	1
by the smallest amount of moles)			

So the simplest formula for X is: CH₄O

c) As the simplest unit (empirical formula) has a mass of 12 + (4 x 1) + 16 = 32, and this is equal to the relative molecular mass of X, the molecular formula must be the same as the empirical formula.

3.

d)

- a) Molar mass of white phosphorus, $P_4 = (31 \times 4) = 124 \text{ g}$ Moles of phosphorus, $P_4 = \frac{20.7}{124}$ = 0.166.. mol = 0.17 mol (to 2 significant figures)
- b) As the ratio of phosphorus to phosphorus(III) fluoride from the chemical equation is 1:4, the moles of the latter must be:
 4 x 0.166.. mol = 0.667.. mol
- = 0.67 mol (to 2 significant figures)
 c) Mass of phosphorus(III) fluoride = moles of phosphorus(III) fluoride x molar mass of PF₃ Molar mass of PF₃ = 31 + (19 x 3) = 88 So mass of PF₃ = 0.667.. mol x 88 = 58.7.. g
 - = **59 g** (to 2 significant figures)