Using mole calculations to solve problems

This resource accompanies the infographic Moles and Avogadro's number in Education in Chemistry which can be viewed at: https://rsc.li/3Ksvr07

Learning objectives

1 Recall how to use simple mole calculations to calculate masses, moles, or relative formula masses.

2 Practice rearranging equations.
3 Develop confidence in decoding complex word problems.

The accompanying student worksheet is designed to support students in using simple mole calculations learned in pre-16 chemistry, embedded within more complex problems and multi-step calculations of the form encountered at a more advanced level.

Answers: moles, mass, and relative formula mass

Part 1: Working out the moles from the mass of a known substance

Practice questions

1. $600 \mathrm{mg}=0.60 \mathrm{~g}$
$\mathrm{mol}\left(\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Na}_{4} \mathrm{O}_{14} \mathrm{~S}_{4}\right)=0.00063 \mathrm{~mol}$ or $6.3 \times 10^{-4} \mathrm{~mol}($ to 2 sf$)$
2. $\mathrm{Mr}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right)=151$
$\operatorname{mass}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right)=0.50 \mathrm{~g}$
$\mathrm{mol}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right)=0.0033 \mathrm{~mol}$ or $3.3 \times 10^{-3}($ to 2 sf$)$
Part 2: Working out the mass given the number of moles of a known substance

Practice questions

1.

(a) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s)$
(b) $\mathrm{mol}(\mathrm{Mg})=0.40 \mathrm{~mol}$ $\operatorname{mass}(M g)=0.96 g(t o 2 s f)$
(c) Possible answers include:

Incomplete reaction
Impurities on the surface of the magnesium metal will not burn Magnesium held by the tongs will not burn
2.
(a) $\mathrm{Mr}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)=138$
$\mathrm{mol}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)=0.014 \mathrm{~mol}($ to 2 sf$)$
(b) $\mathrm{mol}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)=0.0072 \mathrm{~mol}$ (to 2 sf)
$\mathrm{Mr}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)=180$
$\operatorname{mass}\left(C_{9} H_{8} O_{4}\right)=1.3 g(t o 2 s f)$
(c) Percentage of aspirin in the product $=76 \%$ (to $2 s f$)

Part 3: Working out the identity of a substance from a known mass and known number of moles

Practice questions

1.

(a) $\mathrm{Mr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=78$
$\operatorname{mol}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=0.0513 \mathrm{~mol}(\mathrm{to} 3 \mathrm{sf})$
(b) $\mathrm{mol}($ chlorobenzene $)=0.0513 \mathrm{~mol}$
$\operatorname{Mr}($ chlorobenzene $)=181.5$
(c) Formula of chlorobenzene with $\mathrm{Mr}=181.5$ is $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$

$$
\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}+3 \mathrm{HCl}
$$

2. $\operatorname{mol}\left(A_{x} O\right)=0.1 \mathrm{~mol}$
$\operatorname{Mr}\left(A_{\chi} O\right)=56$
If $x=1: \quad \operatorname{Ar}(A)=40$, so A would be Ca which is a metal.
If $x=2: \quad \operatorname{Ar}(A)=20$, so A would be Ne which is a gaseous non-metal.
So A is Ca , and the product of the reaction is CaO .
