Answer all questions in the spaces provided.
You are provided with a Periodic table.
Write your answers clearly. Show all working.
The total marks allocated to the paper are 40 marks (Section A 10 marks, Section B 30 marks)
The time allocated to the paper is 30 minutes.

SECTION A General chemistry knowledge

1. Choose the diagram (A-D) that best represents: [2]
 a. a pure element ________
 b. a mixture of compounds ________

2. Name the change of state that occurs when a solid changes to a gas without passing through the liquid state. [1]

3. Name the element that is the only metal that is a liquid at room temperature. [1]

4. Name the element which is the most reactive of the halogens. [1]

5. Name the separating technique needed to separate each of the following mixtures: [3]
 a. Pure water from a solution of salty water
 b. The dyes in a sample of ink
 c. A mixture of liquids with similar boiling points

6. Complete the word equation: [1]
 \[\text{magnesium + oxygen} \rightarrow \text{______________________________} \]

7. State the two products from the complete combustion of a hydrocarbon fuel. [1]
8. This question is about fertilisers.

As the population of the world increases more food has to be produced on the finite amount of land available.

Plants need water, sunlight and certain chemical elements – nitrogen (N), phosphorus (P) and potassium (K) to grow. They obtain these elements from the soil and the air.

If the plants are harvested as food crops, these elements are lost from the soil.

Fertilisers replace these nutrients in the soil and help to improve crop yield.

a. Fertilisers are made from ammonia.

A molecule of ammonia is shown in Figure 1.

Figure 1

Name the two elements in a molecule of ammonia

[2]

Figure 2 gives the melting point and boiling point of ammonia.

b. Using the information in Figure 2 circle the state of ammonia at room temperature. [1]

solid liquid gas
Ammonia, NH_3 is made by reacting nitrogen, N_2 with hydrogen, H_2.

c. i. Balance the symbol equation for the reaction shown below:
\[\text{N}_2 + __ \text{H}_2 \rightarrow __ \text{NH}_3 \]

ii. What does the symbol \rightarrow tell you about this reaction?

\[\]

Figure 3 below shows how the percentage conversion to ammonia changes with temperature and pressure.

![Graph showing the relationship between percentage conversion and temperature and pressure.](Graph taken from Teach Chemistry Alchemy: Ammonia; Ammonia questions)

Figure 3

\[\]

d. Use **Figure 3** to identify the conditions that give the highest percentage conversion.

- High temperature and high pressure
- High temperature and low pressure
- Low temperature and high pressure
- Low temperature and low pressure

\[\]

e. An iron catalyst is also used in this reaction.

i. Describe the role of a catalyst in a chemical reaction.

\[\]

ii. Explain why finding a suitable catalyst is important for industrial processes.

\[\]
In order to be absorbed by the crop’s roots, the ammonia must be converted into a soluble salt by reacting it with an acid. This is the fertiliser:

\[
\text{ammonia} + \text{acid} \rightarrow \text{soluble salt (fertiliser)}
\]

A company wishes to make a fertiliser containing the soluble salt, ammonium nitrate.

f. i. Circle the name of the acid ammonia must be reacted with to make ammonium nitrate. [1]

- hydrochloric acid
- sulfuric acid
- nitric acid
- phosphoric acid

ii. Identify the type of reaction used: [1]

- [] thermal decomposition
- [] neutralisation
- [] displacement

Question 8 continues on the next page
Not all the ammonia produced globally is used to make fertilisers. **Table 1** shows the percentage amount of fertiliser used for different purposes.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making fertilisers</td>
<td>80%</td>
</tr>
<tr>
<td>Making other chemicals and wool pulp</td>
<td>8%</td>
</tr>
<tr>
<td>Making nylon</td>
<td>7%</td>
</tr>
<tr>
<td>Making nitric acid</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 1 Percentage amount of ammonia used for different purposes

g. i. Represent this data as a bar chart on the axes below.

g. ii. If the annual global production of ammonia is 176 million tonnes per year, calculate the mass of ammonia in kg that is used to produce fertilisers each year.

\[1 \text{ tonne} = 1000 \text{ kilograms}\]
9. This question is about the metal, copper.

a. A major use of copper is for electrical wiring.
 Identify the two properties of copper from the list below that make it useful for electrical wiring. [2]
 - Good electrical conductivity
 - Good thermal conductivity
 - Ductile
 - Lustrous

b. Copper exists as two isotopes, 63-copper ^{63}Cu and 65-copper ^{65}Cu
 State in terms of subatomic particles what makes these atoms isotopes of the element copper. [2]
 __
 __
 __
 __

Copper can be found in rocks underground in the mineral malachite.
Malachite contains copper carbonate, CuCO$_3$ which has a distinctive green colour.

c. Copper carbonate undergoes thermal decomposition to produce black copper oxide, CuO and carbon dioxide, CO$_2$.
 i. Write a balanced symbol equation for this reaction. [1]
 __
 ii. State if this reaction, an example of a thermal decomposition reaction, is endothermic or exothermic. [1]
 endothermic exothermic
A student investigated the thermal decomposition of a sample of copper carbonate.

Figure 4 shows the apparatus they used.

Table 2 shows their results.

![Image of thermal decomposition setup](image.png)

<table>
<thead>
<tr>
<th>Mass of test tube and copper carbonate before heating in g</th>
<th>Mass of test tube and solids after 5 min of heating in g</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.65</td>
<td>22.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes observed in the colour of the solid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>__________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>__________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

Table 2

d. i. Explain the change in mass observed after heating the copper carbonate for 5 minutes. [2]

ii. Complete **Table 2** by describing the changes that would be observed to both the solid and the limewater. [2]
In the early days of commercial mining, miners extracted malachite from the ground and used it as a source of pure copper.

Using the reactivity series explain why copper can be extracted from copper carbonate by heating with carbon. [2]

In order to continue to use copper as sustainably as possible it is important to continue to recycle as much as we can.

Currently 34% of the global annual amount of copper used is recycled.

If in 2020, 8 495 580 tonnes of copper was recycled, calculate the annual global production of copper. [2]

