Testing salts for anions and cations - student sheet

Introduction

Chemists often have to identify the composition of unknown substances. This experiment involves identifying the cations and anions in various salt solutions.

This experiment should take around 1-2 hours.

Equipment

- Apparatus _
 - Eye protection
 - Test tubes

Chemicals

Access to:

- Full range indicator paper
- Ammonia solution, 2 mol dm⁻³
- Sodium hydroxide solution, 0.4 mol dm⁻³
- Hydrochloric acid solution, 0.4 mol dm⁻³
- Barium chloride solution, 0.1 mol dm⁻³
- Limewater solution, 0.02 mol dm⁻³
- Nitric acid, 0.4 mol dm⁻³
- Silver nitrate solution, 0.1 mol dm⁻³
- •

Unknown substances labelled A, B, C ...each might contain one of the following anions and one of the following cations:

Anions - OH⁻, SO₄^{2–}, CO₃^{2–}, Cl⁻, Br⁻, l⁻, NO₃⁻ Cations - H⁺, Ca²⁺, Cu²⁺, Fe³⁺, Fe²⁺, NH₄⁺

A sensible selection might be:

- Copper chloride (toxic if swallowed, causes skin irritation and eye damage)
- Potassium carbonate (harmful if swallowed, skin/eye irritant)
- Potassium iodide (skin/eye irritant)
- Copper(II) sulfate (harmful if swallowed, skin/eye/respiratory irritant)
- Iron(III) chloride (harmful if swallowed, skin Irritant, causes serious eye damage)
- Iron(II) sulfate (harmful if swallowed, skin/eye irritant)
- Lead nitrate (reproductive toxin, causes serious eye damage, harmful if swallowed or inhaled, possible carcinogen and skin sensitiser)

Health, safety and technical notes

- Read our standard health and safety guidance here <u>https://rsc.li/3j03kxu</u>
- Always wear eye protection.
- Prepare dilute solutions in a fume cupboard.
- Ammonia solution is corrosive, causing burns, and gives off ammonia vapour which irritates the eyes, lungs and respiratory system. See CLEAPSS Hazcard <u>HC006</u>
- Sodium hydroxide is corrosive, causing burns and is extremely dangerous to the eyes. See CLEAPSS Hazcard <u>HC091a</u>
- Hydrochloric acid is corrosive, causing burns. It also gives off choking fumes. See CLEAPSS Hazcard <u>HC047a</u>
- Barium chloride is harmful by inhalation and toxic if swallowed. See CLEAPSS Hazcard <u>HC010a</u>
- Nitric acid is corrosive, causing burns. It also gives off toxic fumes. See CLEAPSS Hazcard <u>HC067</u>
- Silver nitrate is corrosive to skin and eyes and an oxidising agent. The 0.1 mol dm-3 solution is of Low hazard. See CLEAPSS Hazcard <u>HC087</u>.

Procedure

- 1. Dissolve the unknown substance in deionised water. 5–10 cm³ of solution may be needed.
- 2. Using the analysis table, test small aliquots (portions).
- 3. Repeat for the other unknown substances.
- 4. Record your findings.

Test	Anion	Test and observe
A Silver nitrate followed by ammonia solution	Chloride (Cl⁻)	Add a few drops of dilute nitric acid (Irritant) followed by a few drops of silver nitrate solution. A white precipitate of silver chloride is formed. The precipitate is soluble in ammonia solution.
	Bromide (Br⁻)	Add a few drops of dilute nitric acid (Irritant) followed by a few drops of silver nitrate solution. A pale yellow precipitate of silver bromide is formed. The precipitate is slightly soluble in ammonia solution.

	lodide (I⁻)	Add a few drops of dilute nitric acid (irritant) followed by a few drops of silver nitrate solution. A yellow precipitate of silver iodide is formed. It is insoluble in ammonia solution.
B Barium chloride	Sulfate (SO ₄ ^{2–})	Add a few drops of barium chloride solution followed by a few drops of dilute hydrochloric acid. A white precipitate of barium sulfate is formed.
C Hydrochloric acid	Carbonate (CO ₃ ^{2–})	Add dilute hydrochloric acid to the solution (or add it to the solid). Bubbles of carbon dioxide are given off.

Cation	DAdd sodium hydroxide solution	EAdd ammonia solution
Ammonium (NH₄⁺(aq))	Warm carefully. Do not allow to spit. Ammonia (alkali gas) is given off	
Copper (Cu ²⁺ (aq))	Blue (jelly-like) precipitate of Cu(OH) ₂ (s)	Blue jelly like precipitate dissolves in excess ammonia to form a deep blue solution.
Iron(II) (Fe²+(aq))	Green gelatinous precipitate of Fe(OH) ₂ (s)	Green gelatinous precipitate
Iron(III), (Fe ³⁺ (aq))	Rust-brown gelatinous precipitate of Fe(OH) ₃ (s)	Rust brown gelatinous precipitate
Lead(II), (Pb ²⁺ (aq))	White precipitate Pb(OH) ₂ (s) dissolves in excess NaOH(aq)	White precipitate, Pb(OH) ₂
Zinc (Zn ²⁺ (aq))	White precipitate, Zn(OH) ₂ (s)	White precipitate, Zn(OH) ₂ (s) dissolves in excess NH ₃ (aq)
Aluminium (Al³+(aq))	Colourless precipitate, Al(OH) ₃ (s)	Colourless precipitate, Al(OH) ₃ (s)

Flame Test

- 1. Slightly open the air hole of the Bunsen burner.
- 2. Heat a piece of nichrome wire in a Bunsen flame until the flame is no longer coloured.
- 3. Dip the loop at the end of the wire into some water.
- 4. Dip the loop into an unknown salt.
- 5. Hold the wire in the edge of the flame.
- 6. Record the colour and identify the cation using the table provided.

Metal	Colour of flame
Barium	Apple-green
Calcium	Brick-red
Copper	Green with blue streaks
Lithium	Crimson
Potassium	Lilac
sodium	Yellow

Questions

1. Write word and ionic equations for those reactions that give a positive result.

