Quantitative chemistry: knowledge check

1.1 This diagram represents a chemical equation. Label the diagram using the words below.
compound element molecule product reactants

1.2 Use the words to complete the sentences:

hydrogen	reaction oxygen
products	reactants

The diagram in question 1.1 shows an equation summarising a
\qquad . The \qquad can be found on
the right-hand side of the arrow. The \qquad can be found
on the left-hand side of the arrow. The reactants are
\qquad and \qquad .
1.3 Use the words and symbols to complete the sentences:

compound	elements	H_{2}	$\mathrm{H}_{2} \mathrm{O}$	O_{2}

The formula of the hydrogen molecule is \qquad .

The formula of the oxygen molecule is \qquad The formula of the water molecule is \qquad . Both the reactants are
\qquad that contain one type of atom only. The product is a \qquad , which is a substance made up of two (or more) different atoms bonded together.
1.4 Use the words to complete the sentences:

atoms	conservation	hydrogen	mass
oxygen	products	reactants	rearranged

During a chemical reaction, \qquad are neither created nor destroyed. Instead, the atoms are just \qquad to form a new substance. This means that the total mass of the
\qquad will be the same as the total mass of the
\qquad . In this example, there are four atoms of
\qquad and two atoms of \qquad on both sides of the arrow. The equation is balanced and shows that the mass is conserved. The total \qquad stays the same during a chemical reaction. This is the law of \qquad of mass.

Quantitative chemistry: test myself

Use the words to complete the sentences. You do not have to use all the words. You can use the words more than once.
2.1 What does the formula $\mathrm{H}_{2} \mathrm{O}$ mean in terms of the number and type of atoms?
one
two
hydrogen
oxygen
water

There are \qquad atoms of \qquad
and \qquad atom of \qquad in one
molecule of water.
2.2 Write a word equation for the chemical reaction shown in the diagram.

\qquad $+$ \qquad \rightarrow \qquad
2.3 What is the formula for one molecule of hydrogen? For, example, the formula for water is $\mathrm{H}_{2} \mathrm{O}$.

Circle the correct answer.
H2
H
h_{2}
H_{2}
h2
2.4 What is the formula for one molecule of oxygen? For example, the formula for water is $\mathrm{H}_{2} \mathrm{O}$.

Circle the correct answer.
O_{2}
0
o2
0
O_{2}
2.5 Using your answers from questions 2.3 and 2.4 , write a balanced symbol equation for the reaction shown in the diagram in question 2.2.
\qquad $+$ \qquad \rightarrow \qquad
2.6 Why does the number of hydrogen and oxygen atoms on the left-hand side of the arrow have to be equal to those on the right-hand side? Give your answer in terms of conservation of mass.

Use the words to complete the sentences. You do not have to use all the words.

atoms destroyed elements
 produced rearranged

During a chemical reaction, \qquad are only
\qquad ; they cannot be \qquad and
new ones are not made.
2.7 How much water would you expect to make from 4 g of hydrogen and 32 g of oxygen?

Circle the correct answer.
$4 \mathrm{~g} \quad 32 \mathrm{~g} \quad 36 \mathrm{~g} \quad 28 \mathrm{~g}$

Show your working.
\qquad
\qquad
\qquad
2.8 How much water would expect to make from 20 kg of oxygen and 160 kg of hydrogen?

Circle the correct answer.

Show your working.
\qquad
\qquad
\qquad
2.9 How much hydrogen would you need to react with 48 g of oxygen to make 54 g of water?

Circle the correct answer.
6 g
48 g
54 g
102 g

Show your working.
\qquad
\qquad
\qquad
2.10 This is the word equation for heating calcium carbonate:
calcium carbonate \rightarrow calcium oxide + carbon dioxide
Calcium carbonate decomposes to form calcium oxide and carbon dioxide. How much calcium carbonate would you need to start with to produce 28 g of calcium oxide and 22 g carbon dioxide when it completely decomposes?

Circle the correct answer. Show your working.
$22 \mathrm{~g} \quad 28 \mathrm{~g} \quad 6 \mathrm{~g} \quad 50 \mathrm{~g}$

Quantitative chemistry: feeling confident?

3.1 Use the Periodic table and the values below to complete the relative atomic mass column.

1	12	14	16	23	24
	32	35.5	56	63.5	

Element	Symbol	Relative atomic mass
hydrogen	H	
oxygen	O	
chlorine	Cl	
carbon	C	
nitrogen	N	
iron	Fe	
sodium	Ma	
magnesium	Cu	
copper		
sulfur		

3.2 Use the relative atomic masses from question 3.1 to complete the calculations and relative formula masses of the compounds in the table.

Compound name	Chemical formula	Calculation	Relative formula mass
water	$\mathrm{H}_{2} \mathrm{O}$	$(2 \times \mathrm{H})+(1 \times \mathrm{O})$ $=(2 \times 1)+(1 \times 16)$	18
sodium chloride (salt)	NaCl	$(1 \times \mathrm{Na})+(1 \times \mathrm{Cl})$ $=(1 \times 23)+(1 \times 35.5)$	
carbon dioxide	CO_{2}	CH_{4}	NH_{3}

Quantitative chemistry: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	I understand this well	I think I understand this	I need more help
I understand that all substances are made up of atoms and molecules.			
I can identity elements and compounds.			
I can identify reactants and products in a chemical equation.			
I can write simple chemical formulas.			
I can understand and use the law of conservation of mass.			
I can write simple word equations.			
I can write simple balanced symbol equations.			
I can calculate the mass of a reactant or product in a chemical reaction given all other reacting masses.		I think I understand this	I need more help
Feeling confident? topics	I understand		
this well			

