Acid-base back titration calculation

ROYAL SOCIETY
OF CHEMISTRY
Education

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 1: read the question, put information into the table, including writing a balanced equation.

Balanced Equation	N_{2}	$+\mathrm{H}_{2}$	
Ratio	1	3	$2 \mathrm{NH}_{3}$
Mass (g)	84	13	2
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$			
Moles			
Finding limiting reagent			

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 2: calculate formula for the reactants and product.

Balanced Equation	N_{2}	$3 \mathrm{H}_{2}$	
Ratio	1	3	$2 \mathrm{NH}_{3}$
Mass (g)	84	13	2
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$(14 \times 2)=28$	$(1 \times 2)=2$	$(14+(3 \times 1))=17$
Moles			
Finding limiting reagent			

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 3: calculate moles of the reactants using moles $=\frac{\text { mass }}{\text { formula mass }}$

Balanced Equation	N_{2}	$3 \mathrm{H}_{2} \quad \rightarrow$	
Ratio	1	3	$2 \mathrm{NH}_{3}$
Mass (g)	84	13	2
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$(14 \times 2)=28$	$(1 \times 2)=2$	$(14+(3 \times 1))=17$
Moles	$(84 / 28)=3$	$(13 / 2)=6.5$	
Finding limiting reagent			

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 4: work out the limiting reagent while considering ratios. If I have three moles of N_{2} how many moles of H_{2} would I need? ($3 \times 3=9$ moles of hydrogen needed) Do I have enough? ($9>6.5 \rightarrow$ no)

Balanced Equation	N_{2}	$3 \mathrm{H}_{2} \quad \rightarrow$	
Ratio	1	3	$2 \mathrm{NH}_{3}$
Mass (g)	84	13	2
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$(14 \times 2)=28$	$(1 \times 2)=2$	$(14+(3 \times 1))=17$
Moles	$(84 / 28)=3$	$(13 / 2)=6.5$	
Finding limiting reagent	3	9	

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 5: use the ratio of the limiting reagent:product to calculate the moles of product

Balanced Equation	N_{2}	+	$3 \mathrm{H}_{2}$	\rightarrow
Ratio	1	3	$2 \mathrm{NH}_{3}$	
Mass (g)	84	13	2	
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$(14 \times 2)=28$	$(1 \times 2)=2$	$(14+(3 \times 1))=17$	
Moles	$(84 / 28)=3$	$(13 / 2)=6.5$	4.33	
Finding limiting reagent	3	9		

Q: 13 g of hydrogen reacts with 84 g of nitrogen. What is the limiting reagent and what mass of ammonia will be produced?

Step 6: use mass = moles x formula mass to calculate mass of product

Balanced Equation	N_{2}	$+\mathrm{H}_{2} \quad \rightarrow$		$2 \mathrm{NH}_{3}$
Ratio	1	3	2	
Mass (g)	84	13	(73.7)	
Formula mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$(14 \times 2)=28$	$(1 \times 2)=2$	$(14+(3 \times 1))=17 \times$	
Moles	$(84 / 28)=3$	$(13 / 2)=6.5$	4.33	
Finding limiting reagent	3	9		

