Acid-base back titration calculation

Step 1: read the question, put information into the table, including writing a balanced equation.

Balanced Equation	N ₂ -	$+$ $3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	
Formula mass (g mol ⁻¹)			
Moles			
Finding limiting reagent			

Step 2: calculate formula for the reactants and product.

Balanced Equation	N ₂ +	$3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	
Formula mass (g mol ⁻¹)	(14 x 2) = 28	(1 × 2) = 2	$(14 + (3 \times 1)) = 17$
Moles			
Finding limiting reagent			

mass Step 3: calculate moles of the reactants using moles =

formula mass

Balanced Equation	N ₂ +	$3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	
Formula mass (g mol ⁻¹)	(14 x 2) = 28	(1 x 2) = 2	(14 + (3 x 1)) = 17
Moles	(84/28) = 3	(13/2) = 6.5	
Finding limiting reagent			

Step 4: work out the limiting reagent while considering ratios. If I have three moles of N₂ how many moles of H₂ would I need? (3 x 3 = 9 moles of hydrogen needed) Do I have enough? (9 > 6.5 \rightarrow no)

Balanced Equation	N ₂ +	$3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	
Formula mass (g mol ⁻¹)	(14 x 2) = 28	(1 x 2) = 2	(14 + (3 × 1)) = 17
Moles	(84/28) = 3	(13/2) = 6.5	
Finding limiting reagent	3	9	

Step 5: use the ratio of the limiting reagent:product to calculate the moles of product

Balanced Equation	N ₂ +	$3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	
Formula mass (g mol ⁻¹)	(14 x 2) = 28	(1 × 2) = 2	(14 + (3 × 1)) = 17
Moles	(84/28) = 3	(13/2) = 6.5	4.33
Finding limiting reagent	3	9	

÷ 3, × 2

Step 6: use mass = moles x formula mass to calculate mass of product

Balanced Equation	N ₂ +	$3H_2 \rightarrow$	2NH ₃
Ratio	1	3	2
Mass (g)	84	13	(73.7)
Formula mass (g mol ⁻¹)	(14 x 2) = 28	(1 x 2) = 2	$(14 + (3 \times 1)) = 17 \times$
Moles	(84/28) = 3	(13/2) = 6.5	4.33
Finding limiting reagent	3	9	