References

- Barker, V. (2001a) Chemical concepts: particles are made of this… Education in Chemistry 38 (2):36
- Bergquist, W. and Heikkinen, H. (1990) Students' ideas regarding chemical equilibrium Journal of Chemical Education 67 (12) 1000-1003
- Butts, B. and Smith, R. (1987) HSC Chemistry students' understanding of the structure and properties of molecular and ionic compounds Research in Science Education 17: 192 - 201
- Engel Clough, E. and Driver, R. (1986) A study of consistency in the use of students' conceptual frameworks across different task contexts Science Education 70 (4) 473 - 496


• Hand, B.M. (1989) Students' understanding of acids and bases: A two year study Research in Science Education 19:133 - 144


• Hawkes, S.J. (1992) Arrhenius confuses students Journal of Chemical Education 69 (7) 542 - 543


• Johnson, P. (1998c) Children’s understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point International Journal of Science Education 20 (6) 695-709
• Kind, V. (2002b) Chemical concepts: open system chemical reactions Education in Chemistry 39 (4): 91
• Meheut, M., Saltiel, E. and Tiberghien, A. (1985) Pupils’ (11 - 12 year olds) conceptions of combustion European Journal of Science Education 7: 83-93
• Nakleh, M. (1992) Why some students don’t learn chemistry Journal of Chemical Education 69 (3) 191 - 196
• Peterson, R.F. and Treagust, D.F. (1989) Grade-12 students' misconceptions of covalent bonding Journal of Chemical Education 66 (6) 459 - 460
• Ross, K. (1993) There is no energy in food and fuels - but they do have fuel value School Science Review 75 (221) 39 - 47
• Rowell, J.A. and Dawson, C.J. (1980) Mountain or Mole hill: Can cognitive psychology reduce the dimensions of conceptual problems in classroom practice? Science Education 64 (5) 693 - 708
• Schollum, B. (1981a) Chemical change: A working paper of the Learning in Science Project (no. 27) University of Waikato, Hamilton, New Zealand
• Séré, M.-G. (1986) Children’s conceptions of the gaseous state, prior to teaching European Journal of Science Education 8 (4) 413-425
• Stavy, R. (1990a) Children’s conception of changes in the state of matter: From liquid (or solid) to gas Journal of Research in Science Teaching 27 (3) 247-266
• Stavy, R. (1990b) Pupils’ problems in understanding conservation of matter International Journal of Science Education 12 (5) 501-512
• Taber, K.S. (1993a) Case study of an A level student's understanding of chemical bonding: Annie Working paper: Havering College of Further and Higher Education
• Taber, K.S. (1994) Misunderstanding the ionic bond Education in Chemistry 31 (4) 100 - 103
• Taber, K.S. (1996) The secret life of the chemical bond: students’ anthropomorphic and animistic references to bonding International Journal of Science Education 18 (5) 557-568
• Taber, K.S. (1997a) Understanding chemical bonding unpublished PhD thesis, Faculty of Education, Roehampton Institute University of Surrey
• Taber, K.S. (1998) The sharing out of nuclear attraction: or ‘I can’t think about physics in chemistry’ International Journal of Science Education 20 (8) 1001-1014
• de Vos and Verdonk (1985b) A new road to reaction part 2 Journal of Chemical Education 62: 648-649
• de Vos and Verdonk (1986) A new road to reaction part 3: Teaching the heat effect of reactions Journal of Chemical Education 63: 972-974
• de Vos and Verdonk (1987a) A new road to reactions part 4: The substance and its molecules Journal of Chemical Education 64:692-694
• de Vos and Verdonk (1987b) A new road to reactions part 5: The elements and its atoms Journal of Chemical Education 64: 1010-1013