Addition polymerisation: knowledge check

1.1 The diagram represents a reaction in which a small section of polymer is formed.

Add labels to the diagram to identify the monomer, polymer, single C-C covalent bond and double C=C covalent bond. Identify and label the monomer used and the polymer formed.

Name: _____________________

Name: _____________________
1.2 Decide whether each of the following statements is true or false and add your
answer in the box provided. For any statements that are false, write the correct
version in the space provided.

(a) During polymerisation, a large molecule is broken up
into smaller molecules.

True False

(b) Alkanes are used to make addition polymers.

True False

(c) Only one product is formed during addition
polymerisation.

True False

(d) The polymer formed from ethene is poly(ethene).

True False

(e) The monomer used to make poly(propene) is propane.

True False
1.3 Alkenes can be used to make addition polymers. The equation shows ethene molecules joining up to form poly(ethene).

\[n \text{C} = \text{C} \rightarrow \text{C} - \text{C} \]

Add the correct word or words to complete the sentences describing this equation.

The name of the monomer used in this addition polymerisation reaction is _______________.

The name of the polymer formed is _______________.

The _______________ in the monomer molecules allows them to join together to form an addition polymer.

Addition polymers have the prefix _______________, followed by the name of the _______________ in brackets.

As addition polymer molecules are so _______________, they are represented by drawing the part of the polymer that is repeated many times. This is known as the _______________.
Addition polymerisation: test myself

Answer questions 2.1 and 2.2 by circling the correct answer(s). There may be more than one correct answer in each question.

2.1 Which of these molecules is a monomer for an addition polymer?

- [] A
- [] B
- [] C
- [] D

2.2 Which three of these molecules are suitable monomers to make an addition polymer?

- butene
- propane
- pentene
- butane
- ethane
- ethene
- methene
2.3 What is the name of the monomer used to make poly(chloroethene)?

2.4 Name the polymer made from the monomer tetrafluoroethene.

2.5 Draw the repeating unit for poly(propene).

2.6 The diagram shows the repeating unit of an addition polymer:

\[
\begin{array}{c}
\text{[C} \quad \text{Cl} \quad \text{C} \quad \text{Cl}] \\
\text{[C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C}]
\end{array}
\]

Draw the displayed formula of the monomer being represented by this repeating unit.
2.7 The diagram shows a section of a polymer.

\[
\begin{align*}
 &\quad \quad \quad
\end{align*}
\]

Draw the repeating unit of this polymer.
Addition polymerisation: feeling confident?

3.1 Complete the table with the missing images for the monomers or repeating units.

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Repeating unit of polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2024 Royal Society of Chemistry
3.3 Poly(ethenetetrafluoroethene) is made from the two monomers shown:

\[
\begin{align*}
\text{H} & \quad \text{H} \\
C & \quad C \\
\text{H} & \quad \text{H} \\
\text{F} & \quad \text{F} \\
C & \quad C \\
\text{F} & \quad \text{F}
\end{align*}
\]

The two monomers join in the polymer chain in an alternating pattern.

(a) Name the two monomers.

(b) Draw a diagram to represent a section of the polymer chain that contains two molecules of each monomer and is eight carbon atoms long.
Addition polymerisation: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

<table>
<thead>
<tr>
<th>Mini-topic</th>
<th>I understand this well</th>
<th>I think I understand this</th>
<th>I need more help</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can understand the meanings of the terms monomer, polymer and polymerisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can explain how addition polymers are formed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I know how to name addition polymers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can interpret equations used to represent the process of addition polymerisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can identify repeating units.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can deduce the identity of monomers from repeating units and vice-versa.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feeling confident? topic</th>
<th>I understand this well</th>
<th>I think I understand this</th>
<th>I need more help</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can draw the structure of monomers from repeating units and vice-versa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can draw a section of a polymer chain formed from two monomers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>