Addition polymerisation: knowledge check

1.1 The diagram represents a reaction in which a small section of polymer is formed.

Label the diagram using the words provided.

- **monomer**
 - single C–C covalent bond
- **polymer**
 - double C=C covalent bond

Name: ethene

Name: poly(ethene)
1.2 Decide whether each of the following statements is true or false and add your answer in the box provided.

(a) During polymerisation, a large molecule is broken up into smaller molecules.
\[\text{True} \quad \text{False} \]

(b) Alkanes are used to make addition polymers.
\[\text{True} \quad \text{False} \]

(c) Only one product is formed during addition polymerisation.
\[\text{True} \quad \text{False} \]

(d) The polymer formed from ethene is poly(ethene).
\[\text{True} \quad \text{False} \]

(e) The monomer used to make poly(propene) is propane.
\[\text{True} \quad \text{False} \]

1.3 Alkenes can be used to make addition polymers. The equation shows ethene molecules joining up to form poly(ethene).

\[
\begin{array}{c}
\text{H} \\
\text{C=\text{C}} \\
\text{H} \\
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{H} \\
\text{C=\text{C}} \\
\text{H} \\
\end{array}
\]

Use the words to complete the sentences describing this equation.

monomer double covalent bond ethene repeating unit poly large poly(ethene)

The name of the monomer used in this addition polymerisation reaction is ________________ . The name of the polymer formed is ________________. The ________________ in the monomer molecules allows them to join together to form an addition polymer.
Addition polymers have the prefix ________________, followed by the name of the ________________ in brackets.

As addition polymer molecules are so ________________, they are represented by drawing the part of the polymer that is repeated many times. This is known as the ________________.

Addition polymerisation: test myself

Answer questions 2.1 to 2.6 by circling the correct answer(s). There may be more than one correct answer in each question.

2.1 Which of these molecules is a monomer for an addition polymer?

A

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{C} \text{C} \text{C} \text{C} \\
\text{H} \\
\end{array}
\]

B

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{C} \text{C} \text{C} \text{C} \\
\text{Cl} \\
\end{array}
\]

C

\[
\begin{array}{c}
\text{H} \\
\text{Cl} \\
\text{Cl} \\
\text{C} \text{C} \\
\text{C} \\
\text{H} \\
\end{array}
\]

D

\[
\begin{array}{c}
\text{H} \\
\text{C} \text{C} \text{C} \text{C} \\
\text{Cl} \\
\text{H} \\
\end{array}
\]
2.2 Which two of these molecules are suitable monomers to make an addition polymer?
- butene
- propane
- pentene
- butane

2.3 What is the name of the monomer used to make poly(chloroethene)?
- chloroethane
- ethene
- chloroethene
- ethane

2.4 What is the name of the polymer made from the monomer tetrafluoroethene?
- poly(fluoroethene)
- poly(tetrafluoroethane)
- poly(ethene)
- poly(tetrafluoroethene)
2.5 Which of the following shows the correct repeating unit for poly(propene)?

A
\[
\begin{array}{c}
\text{H} \\
\text{C} \equiv \text{C} \\
\text{H} \quad \text{CH}_3
\end{array}
\]

B
\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\text{Cl}
\end{array}
\]

C
\[
\begin{array}{c}
\text{H} \\
\text{C} \equiv \text{C} \\
\text{H} \quad \text{CH}_3
\end{array}
\]

D
\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{C} \\
\text{H} \quad \text{CH}_3 \\
\text{C} \\
\text{C} \\
\text{Cl} \\
\text{Cl}
\end{array}
\]

2.6 The diagram shows the repeating unit of an addition polymer:

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\text{Cl}
\end{array}
\]
Which of the following shows the displayed formula of the monomer being represented by this repeating unit?

A
\[
\begin{align*}
\text{H} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

B
\[
\begin{align*}
\text{Cl} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

C
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

D
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

2.7 The diagram shows a section of a polymer.

\[
\begin{align*}
\text{H} & \quad \text{Cl} & \quad \text{H} & \quad \text{Cl} & \quad \text{H} & \quad \text{Cl} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]
Draw the repeating unit of this polymer.

[Hint: Remember to use square brackets with bonds extending left and right through the brackets. You should also include a subscript ‘n’ on the bottom right of the brackets.]
Addition polymerisation: feeling confident?

3.1 Use the formulas to complete the table.

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Repeating unit of polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Poly(ethenetetrafluoroethene) is made from the two monomers shown:

- ethene
- tetrafluoroethene

The two monomers join in the polymer chain in an alternating pattern.

Complete the diagram to produce a section of the polymer chain that contains two molecules of each monomer and is eight carbon atoms long.
Addition polymerisation: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

<table>
<thead>
<tr>
<th>Mini-topic</th>
<th>I understand this well</th>
<th>I think I understand this</th>
<th>I need more help</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can understand the meanings of the terms monomer, polymer and polymerisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can explain how addition polymers are formed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I know how to name addition polymers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can interpret equations used to represent the process of addition polymerisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can identify repeating units.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can deduce the identity of monomers from repeating units and vice-versa.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feeling confident? topic</th>
<th>I understand this well</th>
<th>I think I understand this</th>
<th>I need more help</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can draw the structure of monomers from repeating units and vice-versa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can draw a section of a polymer chain formed from two monomers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>