
Chromatography: knowledge check

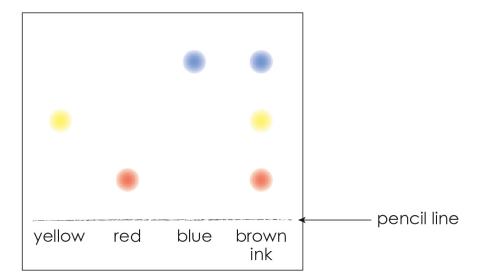
1.1 Learners are completing an experiment to separate the coloured soluble substances in two different food dyes.

The diagram shows the apparatus used and the chromatogram produced.

Label the diagram.

Questions 1.2 to 1.4 are about the experiment in question 1.1.

Review my learning 14-16 years

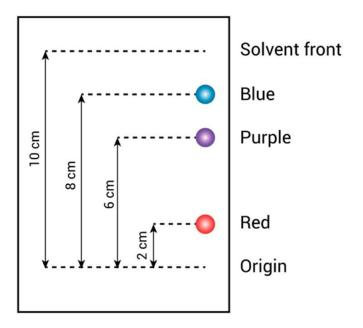

1.2	The table shows the steps in the chromatography process used to separate the
	coloured substances, but they are given in the wrong order.
	Add numbers to show the correct order for the steps.

Draw an origin line in pencil about 1.5 cm from one end of the chromatography paper.
Place the paper inside the beaker. Make sure it just touches the water and it is vertical.
Check the paper is the right length by lining it up on the outside of the beaker so that the water is below the origin line.
Use a pipette to add small drops of food colourings A and B on the chromatography paper.
Allow the solvent to move through the paper, removing it before the solvent reaches the top.

1.3	Complete the gaps in the following sentences.						
	The chromato	graphy paper is	the				The
	solvent is the _				The o	different diss	olved
	substances in	a mixture are at	tracted to t	he		and t	he
	chromatograp	ohy paper in diff	ferent propo	ortions. T	his caus	es them to r	nove at
	different	U	p the				·
1.4	Use some of the	ne words to com	nplete the g	-		_	es.
		two or more	three	four	mixt	ure	
	A pure substai	nce contains or	ne type of e	lement (or		only.
	An impure sub	stance contain	S			_ different el	ements o
	compounds. F	ood colouring A	A consists of	one sub	ostance	and is a/an	
		substance	•				
	Food colouring	g B contains		diff	erent co	loured subst	ances.
	Food colouring	g B is a/an		subst	ance.		

Chromatography: test myself

- 2.1 Give two uses of paper chromatography.
- **2.2** This is a chromatogram of four different inks.


Circle the inks on the chromatogram that are pure substances. Explain how you made your choices.

2.3 How is chromatography used to identify unknown substances?

[Hint: Think about what can be measured and compared on a chromatogram.]

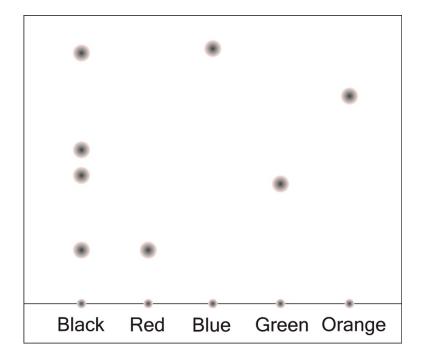
- 2.4 Thin layer chromatography uses a glass plate coated with alumina or silica gel.
 - What does this glass plate replace in the experiment in question 1.1?
- 2.5 This is a chromatogram of dark blue ink.

Use the data shown in the chromatogram to calculate the correct R_f values for the red, purple and blue substances.

Substance	R _f values
Red	
Purple	
Blue	

Review my learning 14-16 years

STUDENT SHEET 🔀


Available from rsc.li/4cclwei

.6	A compound has a R_f value of 0.6. If the solvent travels 16.0 cm up the					
	chromatography paper, what is the distance travelled by the compound in					
	centimetres?					
	[Hint: How should the equation for $R_{\rm f}$ be rearranged to make the distance					
	travelled by the compound the subject of the equation?]					

Chromatography: feeling confident?

3.1 This is a chromatogram of different coloured inks. What can you conclude about the black ink from the chromatogram shown?

Use the words in your answer.

black ink	red	blue	green	orange

3.2 Substances A, B and C are found in chlorophyll. The R_f values of these three substances can be determined using thin layer chromatography and an organic solvent.

Calculate the missing values in the table.

Substance	Distance travelled by the substance when the solvent travels 10 cm (cm)	R _f value		
А	9.8			
В	5.9			
С		0.42		

Chromatography: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	I understand this well	I think I understand this	I need more help
I can describe the process of paper chromatography.			
I can describe how to prepare a chromatogram.			
I can define a pure substance and an impure substance			
I can interpret a chromatogram.			
I can calculate R_f values.			
I can use R_f values.			
Feeling confident? topics	l understand this well	I think I understand this	I need more help
I can interpret chromatograms of coloured inks.			
I can interpret and use information from chromatograms of chlorophyll.			