

Fractional distillation and hydrocarbons: knowledge check

1.1 The diagram shows crude oil being separated into fractions in a fractionating

column.

Use the words listed to label each of the fractions produced.

1.2 Choose some of the correct sentence endings from those provided (A to H) to match each of the sentence starters in the table.

Write the correct letter into the box provided for each sentence starter. The first

one has been done for you.

6363

Crude oil contains	Н
Fractional distillation is used to	
During fractional distillation, the hydrocarbon fractions	
The hydrocarbons are separated according to	
The fractionating column is	

A	evaporate and then condense.
В	cooler at the bottom
С	melt and then freeze.
D	separate crude oil into hydrocarbon fractions.
Е	hotter at the bottom.
F	their different boiling points.
G	separate pure water from salt water.
Н	a mixture of hydrocarbons.

STUDENT SHEET

1.3 Use some of the words to complete the gaps in the following sentences.

	hydro	ogen	C <i>n</i> H2 <i>n</i> +2	carbon	two	C ₃ H ₈	
	C _n H _{2n}	oxygen	C ₃ H ₆	three	fraction	s C ₂ H ₆	
	The mixtures o	of hydrocar	bons colled	cted from th	ne fractionat	ing column ar	e
	called		_·				
	Hydrocarbons	are comp	ounds con	taining		and	
		only.					
	The hydrocark	oons in cruc	de oil are n	nostly alkan	es, which hc	ve the gener	al
	formula		For exc	ample, a ma	plecule of et	hane, which	
	contains		carbor	n atoms, has	s the formulc	l	·
1.4	Use some of th					-	
	bitumen	higher	weal	ker co	valent bond	s melt	
	in	termolecul	ar forces	stronge	r conde	ense	
	liquified petroleum gas lower Small alkane molecules have weak and and low boiling points. They do not in the fractionating column and and leave as						
						_ and	
						umn	
						·	
	Larger alkane	molecules	have		intermole	ecular forces.	Energy
	is needed to b	preak the ir	ntermolecu	llar forces, s	o alkanes wi	th larger mole	cules

have _____ boiling points.

Fractional distillation and hydrocarbons: test myself

Answer questions 2.1 to 2.2 by circling the correct answer(s). There may be more than one correct answer in each question.

2 .1	Which two of the following formulas represent a hydrocarbon?			
	HCl	C ₆ H ₁₂ O ₆		
	CO ₂	СН₃СООН		
	C ₂ H ₄	C ₅ H ₁₂		
	CH₃OH			
2.2	Which alkane has the highest boiling po	bint?		
	CH4	$C_{20}H_{42}$		
	C7H16	C ₇₀ H ₁₄₂		

2.3 The hydrocarbons in the liquified petroleum gas fraction contain between one and four carbon atoms.

Give two properties of these hydrocarbons.

[Hint: think about their boiling points, viscosity and ease of ignition.]

2.4 Name two products that are produced in the incomplete combustion of methane.

2.5 Complete the general equation representing the complete combustion of a hydrocarbon.

hydrocarbon + _____ \rightarrow _____ + water

2.6 Complete the balanced symbol equation representing the complete combustion of propane by adding the correct formulas, including state symbols, and numbers.

 $C_3H_8(g) + ___0_2(g) \rightarrow ___+ + ____$

Fractional distillation and hydrocarbons: feeling confident?

3.1 The diagram shows the apparatus used by learners during the fractional distillation of a crude oil alternative. During the experiment, the learners collected four different fractions.

The table shows some of the observations recorded by the learners when they

tested the properties of each fraction.

Fraction	Temperature range over which the fraction was obtained/°C	Colour	Viscosity	Ease of ignition
1	20–100	very pale yellow		
2	100–150			
3	150–200		doesn't flow very easily	difficult to ignite
4	200–250	brown		

Make predictions about the missing observations and complete the gaps in the table using some of the words and phrases listed.

very difficult to	ignite y	ellow	high viscosity
easy to ignite	green	ver	y easy to ignite
light brown	low viscos	ity	flows quite easily

3.2 The table includes some of the names, molecular formulas and displayed formulas for the first four alkanes.

Complete the table by selecting the correct molecular formulas and displayed formulas from those listed.

butane methane pentane

6363

 $C_2H_6 \qquad \qquad C_3H_8$

Alkane	Molecular formula	Displayed formula
	CH4	Н
ethane		
propane		
	C4H10	

Fractional distillation and hydrocarbons: what do I understand?

 $\mathbf{\Omega}$

STUDENT SHEET

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	l understand this well	l think l understand this	l need more help
I can describe the process of fractional distillation.			
I can explain why crude oil can be separated into fractions.			
l can identify a hydrocarbon from its molecular formulae.			
I can write the general and molecular formulas for alkanes.			
I can describe how the length of the hydrocarbon chain affects its boiling point.			
I can compare the physical properties of the fractions.			
I can compare complete and incomplete combustion.			
Feeling confident? topics	l understand this well	l think l understand this	l need more help
I can predict the results of an experiment in which a crude oil alternative undergoes fractional distillation.			
I can give the molecular and displayed formulas of the first four alkanes.			

