Cracking: knowledge check

1.1 The table compares the supply of crude oil fractions from fractional distillation and the demand.

Fraction	Percentage supplied from crude oil (%)	Percentage demand (%)
gases	3	6
petrol	10	27
kerosene	11	19
bitumen	12	4
diesel	15	23
fuel oil	49	21

Use the data in the table to answer the questions.

- (a) For which fractions is the demand higher than supply?
- (b) For which fractions is supply higher than demand?
- **1.2** Decide whether each of the following statements is true or false and write your answer in the box provided.

For each statement you think is false, write out the correct version.

(a) The process of cracking is used to break larger hydrocarbon molecules into smaller ones.
True False

Review my learning 14-16 years

	(b)	b) Smaller hydrocarbon molecules are generally less useful than larger					
		hydrocarbon molecules.	True False				
	(c)	Saturated hydrocarbons contain at least one double cov	alent bond				
		between carbon atoms.	True False				
	(d)	Alkenes are saturated compounds.	True False				
	(e)	Alkane molecules only contain single covalent bonds bet	ween carbon				
		atoms.	True False				
	(f)	Alkanes and alkenes are part of the same homologous se	eries.				
			True False				
	-						
1.3	Con	nplete the gaps in the sentences.					
	The	process of cracking is used to help match the supply of cru	ude oil fractions				
	with	their					
	The smaller, saturated produced in cracking are used as						
	such as petrol, kerosene and						
	The unsaturated produced are used in the petrochemical						
	industry to make other products including medicines, dyes and						
1.4	Fill in the gaps to complete the sentences describing the two methods of						
	crac	cking.					
	Duri	ng the process of cracking some of the	bonds in the				
	mole	ecules are broken to produce alkanes (and alkenes.				
	Cat	alytic cracking involves heating the hydrocarbons to a ten	operature of				
		to vaporise them. The vapours are passed of	over a				
		of zeolite to the reaction	٦.				

STUDENT SHEET

Steam cracking involves heating the hydrocarbons to a temperature of

_____ to vaporise them.

The vaporised hydrocarbons are mixed with _____ and cracking

occurs.

Cracking: test myself

- 2.1 What type of reaction is cracking?
- 2.2 State the general molecular formula of an alkene.
- 2.3 This is the displayed structural formula of ethene.

How many pairs of electrons are shared in the double covalent bond?

2.4 This equation represents the cracking of decane, $C_{10}H_{22}$.

Identify the unsaturated product.

2.5 Complete the equation representing the cracking of undecane, $C_{11}H_{24}$, to

produce nonane, C_9H_{20} and an unsaturated compound.

 $C_{11}H_{24} \rightarrow ____+____$

2.6 The cracking of dodecane, $C_{12}H_{26}$, produces one molecule of propene, one molecule of ethene and a third alkane product.

State the molecular formula of the alkane product formed.

 $\ensuremath{\text{2.7}}$ The cracking of the alkane $C_{16}H_{34}$ produces an alkane with 12 carbon atoms in

each molecule and a second unsaturated product.

Complete the equation for the reaction.

 $C_{16}H_{34} \rightarrow \qquad _ \qquad + _ \qquad _$

2.8 Suggest two reasons why catalytic cracking is usually preferred to steam

cracking.

Reason 1:			
Reason 2:			

Cracking: feeling confident?

3.1 Ethane or ethene?

Complete the table comparing the saturated compound ethane and the

unsaturated compound ethene.

Compound	Homologous series	Molecular formula	Displayed structural formula	Number of single covalent bonds	Number of double covalent bonds
ethane					
ethene					

3.2 Alkanes that contain between 10 and 16 carbon atoms are the feedstock for steam cracking.

By varying the temperature at which cracking is carried out, chemists can

control the chain length of the alkanes and alkenes produced.

The table provides information about the alkanes and alkenes produced at

two different temperatures during steam cracking.

Temperature	Point at which the carbon chain breaks	Alkanes produced	Alkenes produced
higher temperature	near the end of the alkane chain	higher proportion of longer alkanes containing 10 to 14 carbons	higher proportion of smaller alkenes, ethene and propene
lower temperature	near the middle of the alkane chain	higher proportion of medium-sized alkanes such as C ₈ H ₁₈	higher proportion of larger alkenes, such as C_8H_{16}

Use the information provided in the table to write an equation representing the

cracking of $C_{14}H_{30}$ at each of the two temperatures.

[Hint: You can use the information in the table to decide on the products

formed in each process, but the equations must be balanced.]

(a) Higher temperature

 $C_{14}H_{30} \rightarrow ____+___$

(b) Lower temperature

 $C_{14}H_{30} \rightarrow ____ + ____$

Cracking: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	l understand this well	l think l understand this	l need more help
I can compare the supply			
and demand of fractions			
produced from the			
fractional distillation of crude oil.			
I can describe the reasons			
for cracking.			
I can describe the			
production of smaller			
alkane molecules and			
alkene molecules from			
cracking.			
I can write equations to			
represent cracking.			
I can compare catalytic and steam cracking.			
	l understand	I think I	I need more
Feeling confident? topics	this well	understand this	help
I can describe the			
difference between			
ethane and ethene.			
I can predict products			
formed during steam			
cracking.			

