Cracking: knowledge check

1.1 The data in the table compares the supply of crude oil fractions from fractional

distillation with their demand.

Fraction	Percentage supplied from crude oil (%)	Percentage demand (%)
gases	3	6
petrol	10	27
kerosene	11	19
bitumen	12	4
diesel	15	23
fuel oil	49	21

Use the data in the table, and the words provided, to complete the sentences.

gases	petrol	kerosene	diesel	fuel oil	bitumen
guses	penor	Keiosene	alesei		Diforment

(a) The fractions where the amount needed (demand) is higher than the

amount produced (supply) are _____, ____,

_____ and _____

(b) The fractions where demand is higher than supply are _____

and _____.

- 1.2 Decide whether each of the statements is true or false and write your answer in the box provided.
 - (a) The process of cracking is used to break larger hydrocarbon molecules
 into smaller ones.

 True False
 - (b) Smaller hydrocarbon molecules are generally less useful than larger hydrocarbon molecules.
 True False

Review my learning 14-16 years

(c) Saturated hydrocarbons contain at least one double covalent bond False True between carbon atoms. (d) Alkenes are saturated compounds. True False (e) Alkane molecules only contain single covalent bonds between carbon True False atoms. (f) Alkanes and alkenes are part of the same homologous series. False True **1.3** Choose the correct words to complete the sentences. The process of cracking is used to help match the supply of crude oil fractions with their demand/price. The smaller, saturated alkanes/alkenes produced in cracking are used as fuels/polymers such as petrol, kerosene and bitumen/diesel. The unsaturated **alkanes/alkenes** produced are used in the petrochemical

industry to make other products including medicines, dyes and **fuels/polymers**.

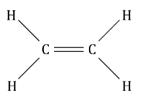
1.4 Use the words provided to complete the sentences describing the two types of cracking.

stea	m covalen	t spee	ed up	800°C		
	550°C c	atalyst	smaller			
During the process	of cracking som	he of the		bonds in the		
molecules are brok	en to produce _		a	lkanes and alkenes.		
Catalytic cracking	Catalytic cracking involves heating the hydrocarbons to a temperature of					
to vaporise them. The vapours are passed over a						
	of zeolite to		the	reaction.		

STUDENT SHEET

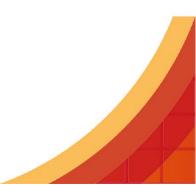
Steam cracking involves heating the hydrocarbons to a temperature of

_____ to vaporise them.

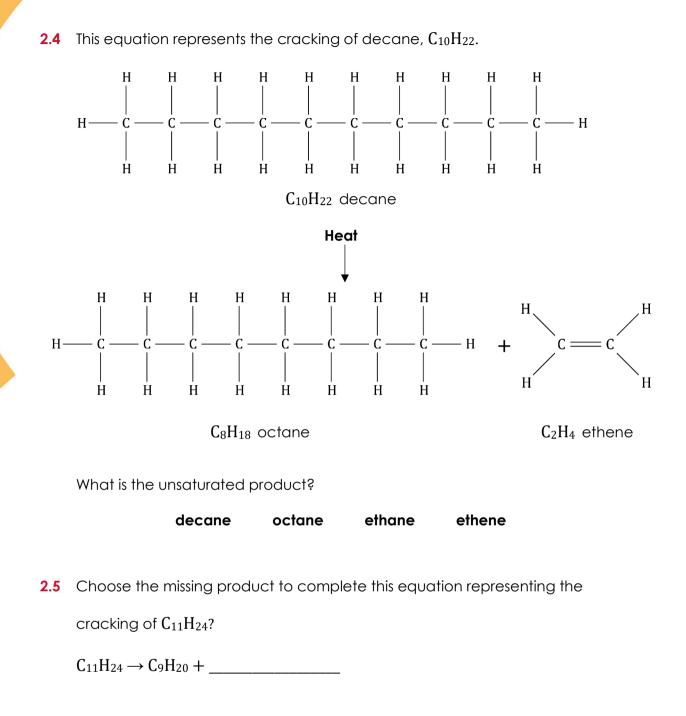

The vaporised hydrocarbons are mixed with _____ and cracking occurs.

Cracking: test myself

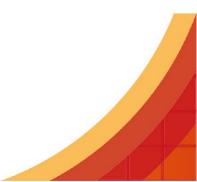
Answer questions 2.1 to 2.7 by circling the correct answer.


2.1 What type of reaction is cracking?reductionoxidationprecipitationthermal decomposition2.2 What is the general molecular formula of an alkene? C_nH_{2n} C_nH_{2n+2} $C_nH_{2n}O_n$ CH

2.3 The image shows the displayed structural formula of ethene.


How many pairs of electrons are shared in the double covalent bond?

one two three four



Review my learning 14–16 years Available from <u>rsc.li/3PmRw5E</u>

C₂H₄ C₃H₆ C₃H₈ C₂H₆

2.6 The cracking of dodecane, $C_{12}H_{26}$, produces one molecule of propene, one molecule of ethene and a third alkane product.

 $C_{12}H_{26} \rightarrow ___+ C_2H_4 + C_3H_6$

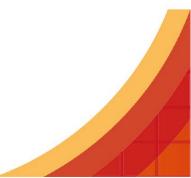
Choose the molecular formula of the alkane product formed?

 $C_{10}H_{22}$ $C_{9}H_{20}$ $C_{8}H_{18}$ $C_{7}H_{16}$

2.7 The cracking of the alkane $C_{16}H_{34}$ produces an alkane with 12 carbon atoms in

each molecule and a second unsaturated product.

Use some of the formulas provided to complete the equation for the reaction.

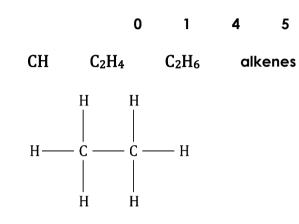

C	16H34	$C_{12}H_{24}$	$C_{12}H_{26}$	C_3H_6	C_4H_8
$C_{16}H_{34} \rightarrow$		+			

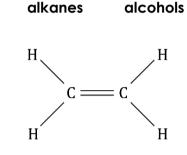
2.8 Suggest two reasons why catalytic cracking is usually preferred to steam cracking.[Hint: Think about the amount of energy needed and what happens to the

catalyst.]

Reason 1:		

Reason 2:			

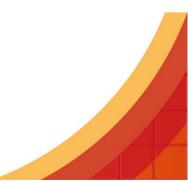



Cracking: feeling confident?

STUDENT SHEET

3.1 Ethane or ethene? Use some of the displayed structural formulas, words and numbers provided to complete the table comparing ethane and ethene. Some of the words and numbers will not be used.

5

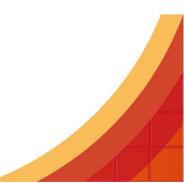


7

6

Compound	Homologous series	Molecular formula	Displayed structural formula	Number of single covalent bonds	Number of double covalent bonds
ethane					
ethene					

3.2 Alkanes that contain between 10 and 16 carbon atoms are the feedstock for steam cracking. By varying the temperature at which cracking is carried out, chemists can control the chain length of the alkanes and alkenes produced. The table provides information about the alkanes and alkenes produced at two different temperatures during steam cracking.

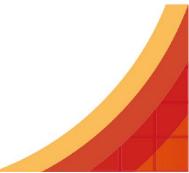

Temperature	Point at which the carbon chain breaks	Alkanes produced	Alkenes produced
higher temperature	near the end of the alkane chain	higher proportion of longer alkanes containing 10 to 14 carbons	higher proportion of smaller alkenes, ethene and propene
lower temperature	near the middle of the alkane chain	higher proportion of medium-sized alkanes such as C ₈ H ₁₈	higher proportion of larger alkenes, such as C_8H_{16}

Use the information provided, and choose from the molecular formulas provided, to write an equation representing the cracking of $C_{14}H_{30}$ at each of the two temperatures.

[Hint: You can use the information in the table to decide on the products

formed in each process, but the equations must be balanced.]

		C_2H_4	C_3H_6	C7H14	C ₈ H ₁₆	
	C ₁₃ H ₂₈	C ₁₂ H	I ₂₆	C ₈ H ₁₈	C9H20	C_6H_{14}
(a)	Higher temp	perature				
	$C_{14}H_{30} \rightarrow _$			-		
(b)	Lower temp	erature				
	$C_{14}H_{30} \rightarrow $			-		



STUDENT SHEET

Cracking: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	l understand this well	l think l understand this	l need more help
I can compare the supply			
and demand of fractions			
produced from the fractional distillation of			
crude oil.			
I can describe the reasons			
for cracking.			
I can describe the			
production of smaller			
alkane molecules and			
alkene molecules from			
cracking.			
represent cracking.			
I can compare catalytic			
and steam cracking.			
Feeling confident? topics	l understand this well	l think l understand this	l need more help
I can describe the			
difference between			
ethane and ethene.			
I can predict products			
formed during steam			
cracking.			

