




## 57<sup>th</sup> INTERNATIONAL CHEMISTRY OLYMPIAD 2025 UK Round One MARK SCHEME

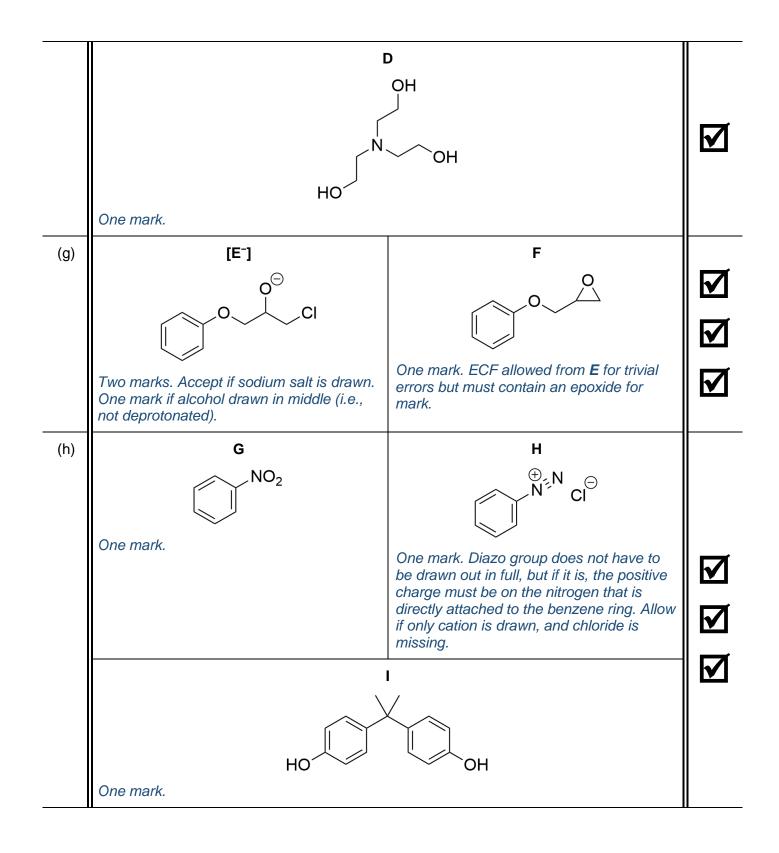
Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

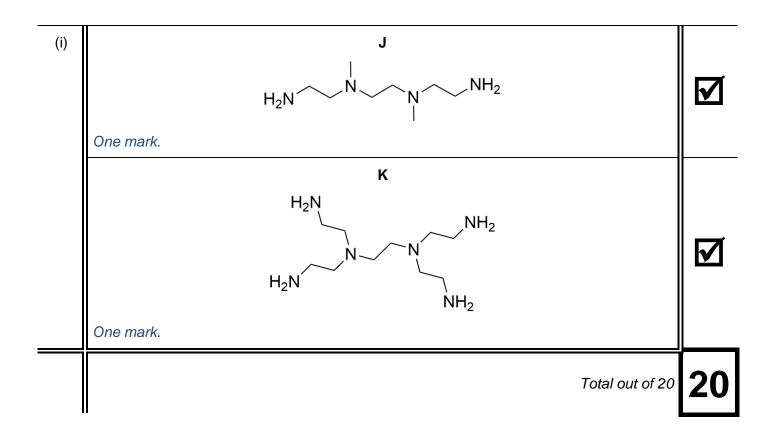
In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme and where ECF is not allowed.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae if the representation is unambiguous.

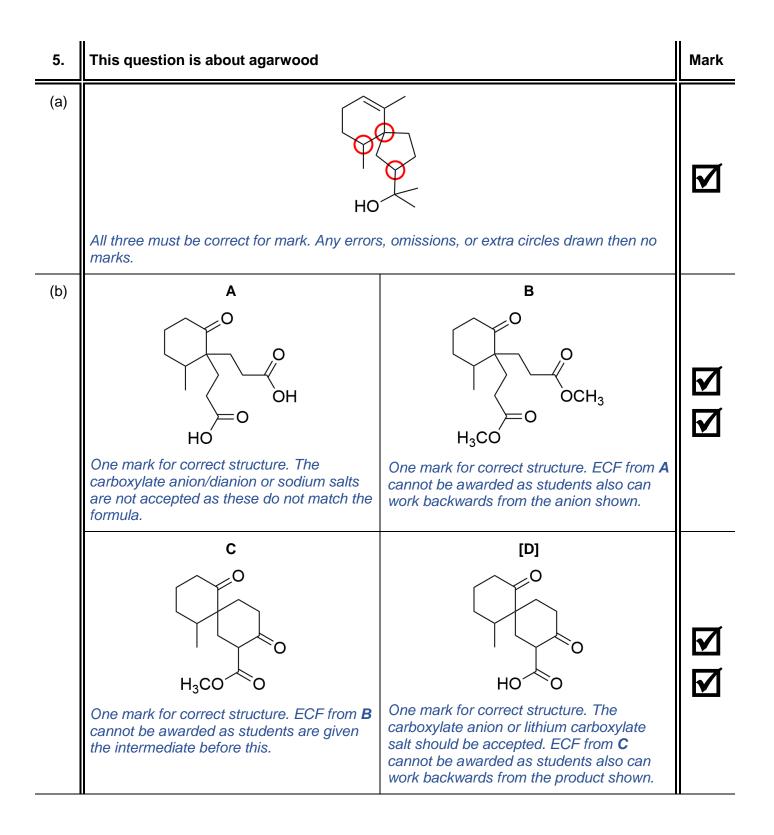
State symbols are not required for balanced equations and students should not be penalised if they are absent.

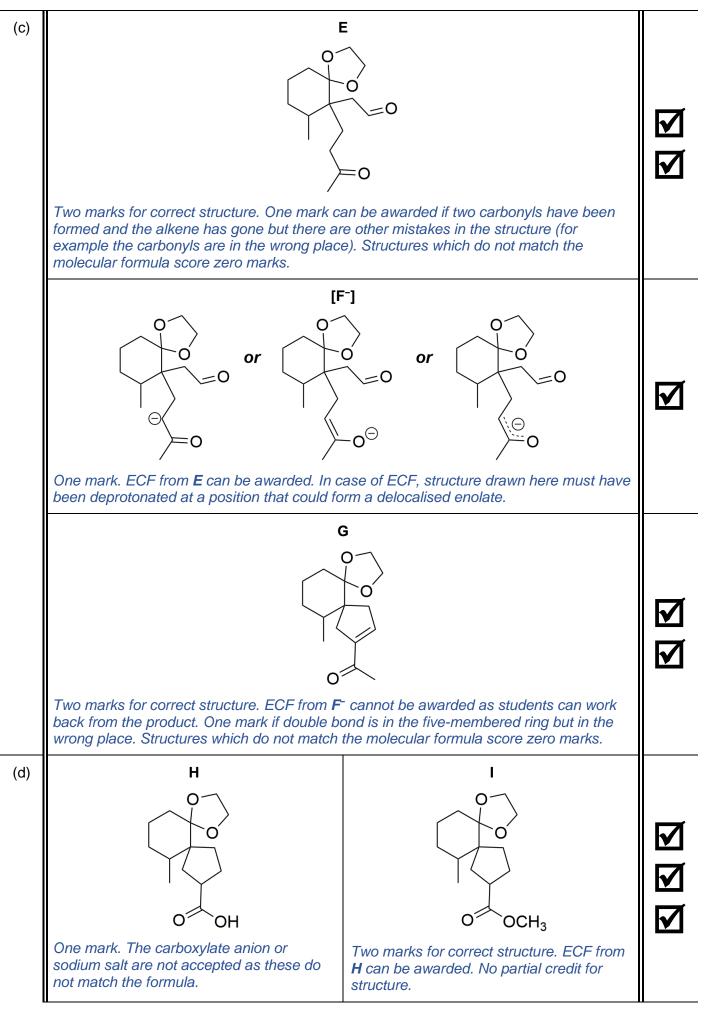

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

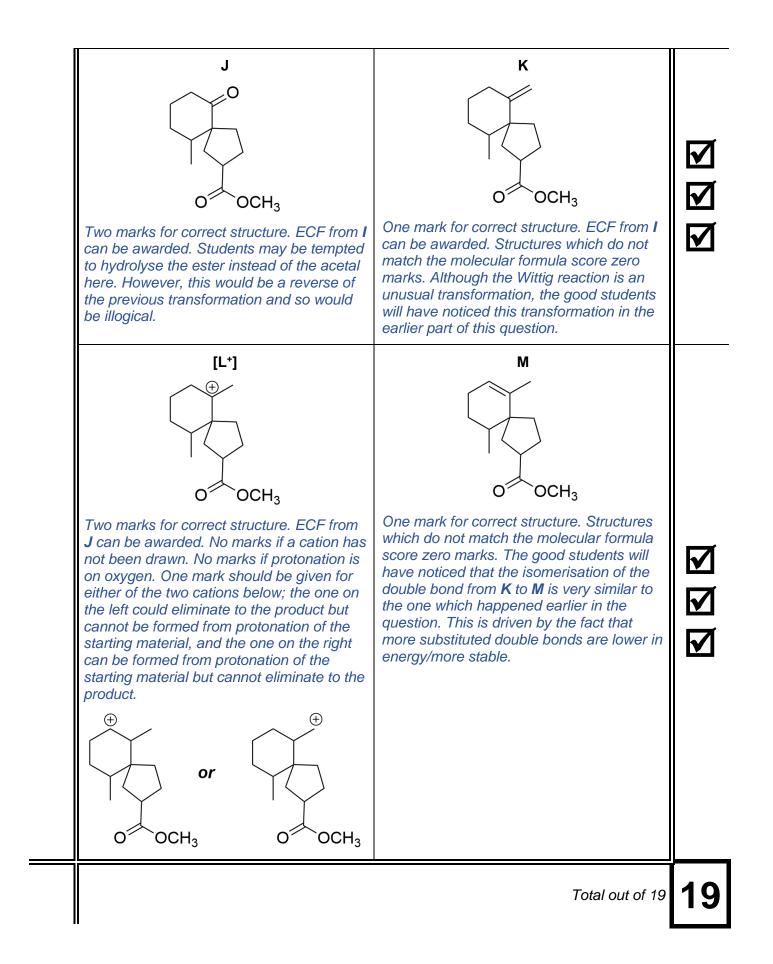

| Question        | 1 | 2 | 3  | 4  | 5  | 6  | Total |
|-----------------|---|---|----|----|----|----|-------|
| Marks Available | 8 | 9 | 20 | 12 | 19 | 15 | 83    |

| 1.  | This question is about clay pigeon shooting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (a) | (i) $C_6H_7(OH)_3O_2 + 3HNO_3 \rightarrow C_6H_7(ONO_2)_3O_2 + 3H_2O$<br>State symbols are not required. Accept multiples of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{V}$      |
|     | (ii) $\bigcirc$ $N$ $O$ $N$ $O$ $An overall positive charge must be indicated for the mark.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                 |
| (b) | $HNO_{3} + H_{2}SO_{4} \rightarrow H_{2}NO_{3}^{+} + HSO_{4}^{-}$ State symbols are not required. Accept multiples of this equation. $Accept H^{+} + HNO_{3} \rightarrow H_{2}NO_{3}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                 |
| (c) | $H_2NO_3^+ \rightarrow NO_2^+ + H_2O$<br>State symbols are not required. Accept multiples of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| (d) | $C_6H_7N_3O_{11} + {}^9/_4O_2 \rightarrow 6CO_2 + {}^7/_2H_2O + {}^3/_2N_2$<br>State symbols are not required. Accept multiples of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                 |
| (e) | $\Delta H^{\ominus}_{c} = 6 \times \Delta H^{\ominus}_{f}(CO_{2}) + 3.5 \times \Delta H^{\ominus}_{f}(H_{2}O) - \Delta H^{\ominus}_{f}(\text{cellulose trinitrate})$ $= (6 \times -393.5 \text{ kJ mol}^{-1}) + (3.5 \times -285.8 \text{ kJ mol}^{-1}) - (-653.1 \text{ kJ mol}^{-1})$ $= -2708.2 \text{ kJ mol}^{-1}$ Answer must be negative for mark. ECF from part (d) can be awarded if stoichiometric coefficients for CO <sub>2</sub> , H <sub>2</sub> O, and cellulose trinitrate are off, but not if wrong chemical products are suggested, e.g. CO.                                                                                                                                                                                                                                                      | V                 |
| (f) | $C_6H_7N_3O_{11} \rightarrow {}^{9}\!/_2CO + {}^{7}\!/_2H_2O + {}^{3}\!/_2N_2 + {}^{3}\!/_2CO_2$<br>State symbols are not required. Accept multiples of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{\nabla}$ |
| (g) | $\begin{split} M_{(Cellulose\ trinitrate)} &= 297.15\ \mathrm{g\ mol}^{-1} \\ n_{(Cellulose\ trinitrate)} &= \frac{5.00\ \mathrm{g}}{297.15\ \mathrm{g\ mol}^{-1}} = \ 0.01683\ \mathrm{mol} \\ n_{(gas\ prodcued)} &= 11 \times 0.01683\ \mathrm{mol} = 0.1851\ \mathrm{mol} \\ N_{(gas\ produced)} &= \frac{nRT}{p} = \frac{0.1851\ \mathrm{mol} \times 8.314\ \mathrm{J}\ \mathrm{K}^{-1}\ \mathrm{mol}^{-1} \times 473\ \mathrm{K}}{101325\ \mathrm{Pa}} \\ V_{(gas\ produced)} &= 7.18 \times 10^{-3}\ \mathrm{m}^{3} \\ No\ marks\ if\ answer\ not\ given\ in\ m^{3}\ as\ asked\ in\ question.\ If\ answer\ in\ part\ (f)\ is\ incorrect,\ allow\ ECF\ using\ n_{(gas\ produced)}\ from\ part\ (f).\ Allow\ if\ student\ has\ used\ standard\ pressure\ of\ 1\ bar\ rather\ than\ 1\ atmosphere. \end{split}$ | V                 |
|     | Total out of 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                 |

| 2.  | This question is about BrAt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | Mark              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (a) | number of a<br>$= \frac{30 \text{ g}}{219 \text{ g mol}^{-1}} \times 6.022 \times 6.0$ |                                                                                                                                                                                                                                                                                              | R                 |
| (b) | A<br>CaMg₂Bi₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              | N                 |
| (c) | <b>B:</b> MgCl <sub>2</sub> <b>C:</b> CaCl <sub>2</sub><br>Both must be correct for mark. No credit if wro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ong way around.                                                                                                                                                                                                                                                                              |                   |
| (d) | x = 211<br>Both must be correct and the correct way aro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y = 85<br>und for mark.                                                                                                                                                                                                                                                                      | $\mathbf{\nabla}$ |
| (e) | Bi + 4HNO <sub>3</sub> $\rightarrow$ Bi(NO <sub>3</sub> ) <sub>3</sub> + 2H <sub>2</sub> O + NO<br>State symbols are not required. Accept multip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oles of this equation.                                                                                                                                                                                                                                                                       | R                 |
| (f) | D<br>I2<br>One mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>E</b><br>Brl<br>One mark. No ECF if <b>D</b> is incorrect.                                                                                                                                                                                                                                | <b>N</b>          |
| (g) | $z = \text{number}$ $m_t = m_0$ $z = \log_2$ $z = \log_2 \left(\frac{3.65 \times 3.60}{2} + 1.00\right)$ $t = t_{1/2}$ $t = \frac{433 \text{ min}}{60 \text{ min}} \times 9$ One mark can be awarded if they have correct half-lives or have the equivalent algebraic explosion of two. Do not phous, then give one mark out of two. Do not phous nearest hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_{2} \times \left(\frac{1}{2}\right)^{z}$ $f_{2} \left(\frac{m_{t}}{m_{0}}\right)$ $\frac{10^{-3} \text{ g}}{50 \text{ g}} = 9.95$ $f_{2} \times z$ $g_{3} = 72 \text{ hours}$ $f_{3} = 72 \text{ hours}$ $f_{3} = 12 \text{ hours}$ $f_{3} = 12 \text{ hours}$ $f_{3} = 12 \text{ hours}$ | <b>N</b>          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total out of 9                                                                                                                                                                                                                                                                               | 9                 |


| 3.  | This question                                                | is about   | epoxides           |           |             |               |             |      | Mark         |
|-----|--------------------------------------------------------------|------------|--------------------|-----------|-------------|---------------|-------------|------|--------------|
| (a) | C <sub>n</sub> H <sub>2n</sub> O                             |            |                    |           |             |               |             |      |              |
| (b) | C <sub>2</sub> H <sub>5</sub> OC <sub>2</sub> H <sub>5</sub> | 60°<br>✓   | 90°                | 104.5°    | 107°        | 109.5°        | 120°        | 180° | <b>I</b>     |
| (c) | R <sup>O</sup> H                                             |            |                    |           |             |               |             |      |              |
| (d) | One mark for e<br>above. If three<br>contain the two         | each corre | s are draw         | n maximun | ner. Two vi | ne mark if th | e three st  |      | R<br>R       |
| (e) | C₄H₀ isom                                                    | -          |                    |           |             |               | ks. Two iso | 4    | N<br>N<br>N  |
| (f) | HC<br>One mark.                                              | B          | S <sup>∕</sup> CH₃ |           | One mark.   |               | °∩NH₂       |      | $\mathbf{N}$ |




| 4.  | This question is about Raman spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (a) | $\begin{array}{r} \frac{n}{2}C_{2}H_{2}\ +\ \frac{n}{4}O_{2}\ \rightarrow\ C_{n}\ +\ \frac{n}{2}H_{2}O\\ \\ or\ 2nC_{2}H_{2}\ +\ nO_{2}\ \rightarrow\ 4C_{n}\ +\ 2nH_{2}O\\ \\ \hline State\ symbols\ are\ not\ required.\ Accept\ multiples\ of\ this\ equation. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| (b) | $n_{C_{2}H_{2}} = \frac{pV}{RT} = \frac{101325 \text{ Pa} \times 40.00 \times 10^{-3} \text{ m}^{3}}{8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 298 \text{ K}} = 1.636 \text{ mol}$ There are 2 C atoms in every C <sub>2</sub> H <sub>2</sub> .<br>$n_{C \ atoms, \ gas} = 1.636 \text{ mol} \times 2 = 3.272 \text{ mol}$<br>$n_{C \ atoms, \ nanotubes} = \frac{242 \times 10^{-3} \text{g}}{12.01 \text{ g mol}^{-1}} = 0.0201 \text{ mol}$<br>$yield = \frac{0.0201 \text{ mol}}{3.272 \text{ mol}} \times 100\% = 0.616\%$<br>Allow if determined from molar volume of gas of 24 dm <sup>3</sup> mol <sup>-1</sup> .<br>$n_{C_{2}H_{2}} = 1.667 \text{ mol} \ yield = 0.603\%$ |      |
| (c) | A<br>A<br>Accept if drawn with a circle for delocalised electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R    |
| (d) | B<br>B<br>Brackets must be drawn for mark but they do not have to be square brackets. Students<br>do not need to write n after the brackets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R    |
| (e) | (i)<br>$f_{1} = \frac{2.998 \times 10^{8} \text{ m s}^{-1}}{5028.8 \times 10^{-10} \text{ m}} = 5.962 \times 10^{14} \text{ Hz}$ $f_{X} = \frac{2.998 \times 10^{8} \text{ m s}^{-1}}{4358.3 \times 10^{-10} \text{ m}} = 6.879 \times 10^{14} \text{ Hz}$ $\Delta f_{1} = (6.879 - 5.962) \times 10^{14} \text{ Hz}$ $= 9.17 \times 10^{13} \text{ Hz}$                                                                                                                                                                                                                                                                                                                                 | V    |
|     | (ii)<br>$f_{2} = \frac{2.998 \times 10^{8} \text{ m s}^{-1}}{4683.9 \times 10^{-10} \text{ m}} = 6.401 \times 10^{14} \text{ Hz}$ $\Delta f_{2} = (6.879 - 6.401) \times 10^{14} \text{ Hz}$ $\Delta f_{2} = 4.78 \times 10^{13} \text{ Hz}$ $\frac{4.78 \times 10^{13} \text{ Hz}}{2.998 \times 10^{10} \text{ cm s}^{-1}} = 1600 \text{ cm}^{-1}$                                                                                                                                                                                                                                                                                                                                      | R    |

|      | O–H stretch                 | C-C stretch                                                | C–H stretch                                                                 | conjugated<br>C=C stretch                                                                     | C≡C stretch                         |                 |
|------|-----------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-----------------|
|      |                             |                                                            | $\checkmark$                                                                |                                                                                               |                                     | Line 1          |
|      |                             |                                                            |                                                                             | $\checkmark$                                                                                  |                                     | Line 2          |
|      |                             |                                                            |                                                                             |                                                                                               | ich.                                | One mark ea     |
|      |                             |                                                            | y = -223.37x + 9<br>R <sup>2</sup> = 0.9999<br>0.36 0.38 0.4 0.4<br>1/d /nm | 9335<br>9330<br>9320<br>9325<br>9320<br>9315<br>9310<br>9315<br>9300<br>9295<br>0.3 0.32 0.34 |                                     | (i)             |
|      |                             |                                                            | e given by:                                                                 | tered light will b                                                                            | number of scat                      | Wave            |
|      |                             | $-\frac{A}{d}$                                             | $= v_{irr} - \tilde{v} = v_{irr}$                                           | $v_{scattered}$                                                                               |                                     |                 |
|      |                             |                                                            | et the diameter)                                                            |                                                                                               | ng sure to dout                     | (maki           |
|      | ng any two                  |                                                            | doing linear reg<br>ith units cm <sup>-1</sup> /n                           |                                                                                               |                                     |                 |
|      |                             |                                                            | e is 201 – 245).                                                            |                                                                                               |                                     | •               |
|      | <sup>1</sup> AND if unit is | r 112 cm <sup>-1</sup> /nm <sup></sup><br>it") (acceptable | A value correct<br>I 1 mark total fo<br>less", or "no un<br>r drawing a gra | no unit"). Awaro<br>m <sup>-1</sup> , "dimension                                              | nsionless", or "<br>ct (accept nm c | "dime<br>correc |
|      |                             |                                                            | pt = 9398.5 cm                                                              |                                                                                               |                                     | (ii)            |
|      |                             | 0 <sup>-4</sup> cm                                         | $\frac{1}{n^{-1}} = 1.064 \times 1$                                         | $\lambda = \frac{1}{93951 \text{ m}}$                                                         |                                     |                 |
|      |                             |                                                            | = 1064 nm                                                                   | <i><b>J</b></i> <b>JJJJJJJJJJJJJ</b>                                                          |                                     |                 |
|      |                             | 5 cm <sup>−1</sup>                                         | $\frac{8 \text{ cm}^{-1}\text{nm}}{.20 \text{ nm}} = 186$                   | $\tilde{\nu} = \frac{A}{d} = \frac{223}{12}$                                                  |                                     | (iii)           |
|      |                             | $\frac{1}{1} = 22945 \text{ cm}^{-1}$                      | $\frac{1}{10^{9} \text{m} \times 10^{2} \text{cm m}^{-3}}$                  | $\frac{1}{4358.3 \times 10^{-10}}$                                                            | $\tilde{\nu}_{irr} =$               |                 |
|      |                             |                                                            | 5 – 186 = 2275                                                              |                                                                                               |                                     |                 |
|      |                             | 3                                                          | $\frac{1}{2759 \text{ cm}^{-1}} \times 10^{8}$                              | $\lambda = \frac{1}{2}$                                                                       |                                     |                 |
|      |                             |                                                            | = 4394 Å                                                                    |                                                                                               |                                     |                 |
| ┝──┓ |                             |                                                            |                                                                             | (g)(i).                                                                                       | ECF from part                       | Allow           |
| 12   | Total out of 12             |                                                            |                                                                             |                                                                                               |                                     |                 |
|      |                             |                                                            |                                                                             |                                                                                               |                                     |                 |







| 6.  | This question is | about the iodina                                | ation of ketones                                                                                                                                                                                         |                                                         |    | Mark              |
|-----|------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----|-------------------|
| (a) | A                | В                                               | с                                                                                                                                                                                                        | l2                                                      | HI | $\mathbf{\nabla}$ |
| (b) | (i)              |                                                 | $rate = k_1 [\mathbf{A}]$                                                                                                                                                                                | ]                                                       |    | N                 |
|     | _                | $\xi$ = 4.29 × 10 <sup>-5</sup> s <sup>-1</sup> | $ient = \frac{600 \times 10^{-6}}{14 \text{ mo}}$<br>gradient = 4.29 × 2<br>(acceptable range<br>cal value. One man                                                                                      | $10^{-5} \text{ s}^{-1}$<br>$4.08 \times 10^{-5} - 4.5$ |    | <b>N</b>          |
| (c) |                  |                                                 | $K_{eq} = \frac{k_1}{k_2}$ $\frac{[\mathbf{B}]}{[\mathbf{A}]} = \frac{k_1}{k_2}$ $[\mathbf{B}] = \frac{k_1[\mathbf{A}]}{k_2}$                                                                            |                                                         |    | Ŋ                 |
| (d) | Using the expres |                                                 | $rate = k_3[\mathbf{B}][\mathbf{I}]$                                                                                                                                                                     | ]<br>]                                                  |    | R<br>R            |
| (e) |                  |                                                 | $[\mathbf{B}] = \frac{k_1[\mathbf{A}]}{k_2 + k_3[\mathbf{I}_2]}$ $rate = k_3[\mathbf{B}][\mathbf{I}_2]$ $Rate = \frac{k_1k_3[\mathbf{A}][\mathbf{I}_2]}{k_2 + k_3[\mathbf{I}_2]}$ $. No partial credit.$ |                                                         |    | <b>N</b>          |

| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (f) | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| $ \begin{vmatrix} Product whose reaction pathway has a larger K_{eq} & \checkmark \\ \hline Product whose reaction pathway has a larger K_{eq} & \checkmark \\ \hline Is the major product a low [l_2] & \checkmark \\ \hline Is the major product a low [l_2] & \checkmark \\ \hline One mark each. No ECF can be awarded. \\ \hline g) Setting the rates as equal:   rate_{Top Pathway} = rate_{Bottom Pathway} \\ \frac{k_1k_3[\mathbf{A}][\mathbf{I}_2]}{k_2 + k_3[\mathbf{I}_2]} = \frac{k_4k_6[\mathbf{A}][\mathbf{I}_2]}{k_5 + k_6[\mathbf{I}_2]} \\ k_1k_3(k_5 + k_6[\mathbf{I}_2]) = k_4k_6(k_2 + k_3[\mathbf{I}_2]) \\ k_1k_3k_5 + k_1k_3k_6[\mathbf{I}_2] = k_2k_4k_6 + k_1k_3k_5 \\ [\mathbf{I}_2] = \frac{k_2k_4k_6 - k_1k_3k_5}{k_3k_6(k_1 - k_4)} \\ = \frac{[8.3 \times 2.9 \times 10^{-6} \times 5.2 \times 10^5 - (4.29 \times 10^{-5} \times 5.2 \times 10^5 \times 2.1 \times 10^{-2})] \operatorname{mol}^{-1}dm^3 s^{-3}}{[5.2 \times 10^5 \times 5.2 \times 10^5 \times (4.29 \times 10^{-5} - 2.9 \times 10^{-6})] \operatorname{mol}^{-2}dm^6 s^{-3}}{[\mathbf{I}_2]} = 1.11 \times 10^{-6} \operatorname{mol} dm^{-3} \\ \end{vmatrix}$ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |  |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Is the major product at high [I2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |  |
| $ \begin{array}{ c c c c c c } \hline One \ mark \ each. \ No \ ECF \ can \ be \ awarded. \\ \hline g) & Setting \ the \ rates \ as \ equal: \\ \hline rate_{Top \ Pathway} = \ rate_{Bottom \ Pathway} \\ & \frac{k_1k_3[\mathbf{A}][\mathbf{I}_2]}{k_2 + k_3[\mathbf{I}_2]} = \frac{k_4k_6[\mathbf{A}][\mathbf{I}_2]}{k_5 + k_6[\mathbf{I}_2]} \\ & k_1k_3(\mathbf{k}_5 + k_6[\mathbf{I}_2]) = k_4k_6(k_2 + k_3[\mathbf{I}_2]) \\ & k_1k_3k_5 + k_1k_3k_6[\mathbf{I}_2] = k_2k_4k_6 + k_3k_4k_6[\mathbf{I}_2] \\ & k_1k_3k_6[\mathbf{I}_2] - k_3k_4k_6[\mathbf{I}_2] = k_2k_4k_6 - k_1k_3k_5 \\ & [\mathbf{I}_2] = \frac{k_2k_4k_6 - k_1k_3k_5}{k_3k_6(k_1 - k_4)} \\ & = \frac{[8.3 \times 2.9 \times 10^{-6} \times 5.2 \times 10^5 - (4.29 \times 10^{-5} \times 5.2 \times 10^5 \times 2.1 \times 10^{-2})] \ mol^{-1}dm^3s^{-3}}{[5.2 \times 10^5 \times 5.2 \times 10^5 \times (4.29 \times 10^{-5} - 2.9 \times 10^{-6})] \ mol^{-2}dm^6s^{-3}} \\ & [\mathbf{I}_2] = 1.11 \times 10^{-6} \ mol \ dm^{-3} \end{array} $                                                                                                                                  |     | Product whose reaction pathway has a larger <i>K<sub>eq</sub></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\checkmark$                                                           |  |
| g) Setting the rates as equal:<br>$rate_{Top Pathway} = rate_{Bottom Pathway}$ $\frac{k_1k_3[\mathbf{A}][\mathbf{I}_2]}{k_2 + k_3[\mathbf{I}_2]} = \frac{k_4k_6[\mathbf{A}][\mathbf{I}_2]}{k_5 + k_6[\mathbf{I}_2]}$ $k_1k_3(k_5 + k_6[\mathbf{I}_2]) = k_4k_6(k_2 + k_3[\mathbf{I}_2])$ $k_1k_3k_5 + k_1k_3k_6[\mathbf{I}_2] = k_2k_4k_6 + k_3k_4k_6[\mathbf{I}_2]$ $k_1k_3k_6[\mathbf{I}_2] - k_3k_4k_6[\mathbf{I}_2] = k_2k_4k_6 - k_1k_3k_5$ $[\mathbf{I}_2] = \frac{k_2k_4k_6 - k_1k_3k_5}{k_3k_6(k_1 - k_4)}$ $= \frac{[8.3 \times 2.9 \times 10^{-6} \times 5.2 \times 10^5 - (4.29 \times 10^{-5} \times 5.2 \times 10^5 \times 2.1 \times 10^{-2})] \operatorname{mol}^{-1} \mathrm{dm}^3 \mathrm{s}^{-3}}{[5.2 \times 10^5 \times 5.2 \times 10^5 \times (4.29 \times 10^{-5} - 2.9 \times 10^{-6})] \operatorname{mol}^{-2} \mathrm{dm}^6 \mathrm{s}^{-3}}$ $[\mathbf{I}_2] = 1.11 \times 10^{-6} \operatorname{mol} \mathrm{dm}^{-3}$                                                                                                                                                                                                                 |     | Is the major product a low [I2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ✓                                                                      |  |
| $\begin{aligned} rate_{Top \ Pathway} &= rate_{Bottom \ Pathway} \\ \frac{k_1k_3[\mathbf{A}][\mathbf{I}_2]}{k_2 + k_3[\mathbf{I}_2]} &= \frac{k_4k_6[\mathbf{A}][\mathbf{I}_2]}{k_5 + k_6[\mathbf{I}_2]} \\ k_1k_3(k_5 + k_6[\mathbf{I}_2]) &= k_4k_6(k_2 + k_3[\mathbf{I}_2]) \\ k_1k_3k_5 + k_1k_3k_6[\mathbf{I}_2] &= k_2k_4k_6 + k_3k_4k_6[\mathbf{I}_2] \\ k_1k_3k_6[\mathbf{I}_2] - k_3k_4k_6[\mathbf{I}_2] &= k_2k_4k_6 - k_1k_3k_5 \\ [\mathbf{I}_2] &= \frac{k_2k_4k_6 - k_1k_3k_5}{k_3k_6(k_1 - k_4)} \\ \\ &= \frac{[8.3 \times 2.9 \times 10^{-6} \times 5.2 \times 10^5 - (4.29 \times 10^{-5} \times 5.2 \times 10^5 \times 2.1 \times 10^{-2})] \ \text{mol}^{-1}\text{dm}^3\text{s}^{-3}}{[5.2 \times 10^5 \times 5.2 \times 10^5 \times (4.29 \times 10^{-5} - 2.9 \times 10^{-6})] \ \text{mol}^{-2}\text{dm}^6\text{s}^{-3}} \\ &= \frac{[\mathbf{I}_2] &= 1.11 \times 10^{-6} \ \text{mol} \ \text{dm}^{-3} \end{aligned}$                                                                                                                                                                                                                    |     | One mark each. No ECF can be awarded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9)  | $rate_{Top Pathway} = rate_{E}$ $\frac{k_{1}k_{3}[\mathbf{A}][\mathbf{I}_{2}]}{k_{2} + k_{3}[\mathbf{I}_{2}]} = \frac{k_{4}k}{k_{5}}$ $k_{1}k_{3}(k_{5} + k_{6}[\mathbf{I}_{2}]) = k_{4}k$ $k_{1}k_{3}k_{5} + k_{1}k_{3}k_{6}[\mathbf{I}_{2}] = k_{2}k$ $k_{1}k_{3}k_{6}[\mathbf{I}_{2}] - k_{3}k_{4}k_{6}[\mathbf{I}_{2}] = k_{2}k$ $[\mathbf{I}_{2}] = \frac{k_{2}k_{4}k_{6} - k}{k_{3}k_{6}(k_{1} - k_{3})}$ $= \frac{[8.3 \times 2.9 \times 10^{-6} \times 5.2 \times 10^{5} - (4.29 \times 10^{-5} \times 10^{$ | $\frac{6[\mathbf{A}][\mathbf{I}_{2}]}{\mathbf{A}_{6}(\mathbf{k}_{2} + \mathbf{k}_{3}[\mathbf{I}_{2}])}$ $\frac{6(\mathbf{k}_{2} + \mathbf{k}_{3}[\mathbf{I}_{2}])}{6(\mathbf{k}_{2} + \mathbf{k}_{3}\mathbf{k}_{4}\mathbf{k}_{6}[\mathbf{I}_{2}])}$ $\frac{6(\mathbf{k}_{2} + \mathbf{k}_{3}\mathbf{k}_{4}\mathbf{k}_{6} - \mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}{6(\mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}$ $\frac{6(\mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}{6(\mathbf{k}_{4})}$ $\frac{6(\mathbf{k}_{2} + \mathbf{k}_{3}[\mathbf{I}_{2}])}{6(\mathbf{k}_{2} + \mathbf{k}_{3}\mathbf{k}_{4}\mathbf{k}_{6}[\mathbf{I}_{2}])}$ $\frac{6(\mathbf{k}_{2} + \mathbf{k}_{3}\mathbf{k}_{4}\mathbf{k}_{6} - \mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}{6(\mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}$ $\frac{6(\mathbf{k}_{2} + \mathbf{k}_{3}\mathbf{k}_{4}\mathbf{k}_{6} - \mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}{6(\mathbf{k}_{1}\mathbf{k}_{3}\mathbf{k}_{5})}$ | × 10 <sup>-2</sup> )] mol <sup>-1</sup> dm <sup>3</sup> s <sup>-</sup> |  |