Structure and bonding of carbon

Scientists experimented for many years to remove a single layer of carbon atoms from graphite. They predicted that it would have very useful properties. After many expensive experiments, they eventually succeeded using common sticky tape to remove a layer of carbon atoms from a lump of graphite. This single layer was named graphene.

This is an electron microscope image of graphene.

Source: © Shutterstock

1 (a) What are the lighter-coloured hexagon shapes?

Circle the correct answer.

- A. empty spaces
- B. intermolecular forces
- C. rings of five carbon atoms
- D. rings of six carbon atoms
- (b) What are the darker spaces in the image? Circle the correct answer.
 - A. empty spaces
 - **B.** intermolecular forces
 - C. rings of five carbon atoms
 - D. rings of six carbon atoms

1

STUDENT SHEET

- In context 14–16 years Available from rsc.li/4chQelw
- (c) A sheet of graphene is one atom thick, or 0.345 nm thick. What is the correct thickness of graphene in metres? Circle the correct answer.

Hint: remember, $1 \text{ nm} = 10^{-9} \text{ m}$

- **A.** $3.45 \times 10^{-10} \text{ m}$
- **B.** $3.45 \times 10^{-9} \text{ m}$
- **C.** $3.45 \times 10^{-6} \text{ m}$
- **D.** $3.45 \times 10^{-3} \,\mathrm{m}$
- 2 The diagram shows the structure of graphite:

Source: © Shutterstock

- (a) Name the forces that hold the layers together.
- (b) Suggest why a layer of carbon atoms was easy to remove with sticky tape.
 Circle one or more answers.
 - A. the intermolecular forces are easily overcome
 - **B.** the intermolecular forces are weak
 - **C.** the intermolecular forces do not need much energy to break
- (c) Each layer of carbon atoms in this diagram has 21 carbon atoms. How many delocalised electrons does each carbon atom produce?

In context 14–16 years Available from rsc.li/4chQelw

(d)	The diagram shows three layers of carbon atoms.
	The thickness of each layer of carbon atoms is 0.345 nm.
	The distance between the layers of carbon atoms in the diagram of
	graphite is 0.340 nm.
	Calculate the thickness of the sample of graphite in the diagram.
	Give your answer in nanometres (nm).

- 3 In the 1980s scientists were investigating carbon atoms in deep space. What they found was so surprising, they thought they had made a mistake. They had discovered Buckminsterfullerene.
 - (a) Choose words from those provided to complete the sentences. You do not have to use all the words.

simple molecular	giant covalent	giant ionic	C ⁶⁰	⁶⁰ C		
Until the 1980s, diamond and graphite were the only known forms of						
carbon. Both have a		st	ructure.	The		
formula of the Buckminsterfullerene is						
Buckminsterfullerene has a						
structure.						

This image shows a model of the structure of Buckminsterfullerene.

Source: © Shutterstock

In context 14–16 years Available from rsc.li/4chQelw

(b) Describe how the carbon atoms are arranged in Buckminsterfullerene. Refer to the shapes formed by the carbon atoms.

(c) Calculate the relative formula mass of C_{60} . Ar carbon = 12

Scientists think the first diamonds were discovered in caves in India nearly 4000 years ago. They were valued for their hardness, strength and brilliance. This is a representation of the structure of diamond.

Source: © Shutterstock

- (a) Explain why diamonds are hard. Refer to bonding and structure.
- (b) Jewellers weigh diamonds in carats. One carat = 0.200 g. Calculate the mass, in grams, of a 2.5-carat diamond.

STUDENT SHEET

4

In context 14–16 years Available from rsc.li/4chQelw

(c) The density of diamond = 3.51 g/cm^3 .

Calculate the volume of a 2.5-carat diamond. Give your answer to three significant figures. The equation for density is: density = $\frac{\text{mass}}{\text{volume}}$ Use the equation and your answer from **question 4(b)**.

Which question(s) did you get wrong? Why? What will you do next time you're asked a similar question?

