14-16 years

Writing formulas for ionic compounds

https://rsc.li/3jDzZnr

NO₃

NO₃

Ca²⁺

Pb(NO3)

CO32-

Ca CO3

²b²⁺

The pictures show magnesium nitride (top) and magnesium nitrate (bottom).

- What are the differences between magnesium nitride and magnesium nitrate?
- 2. How do you know which elements they contain?
- 3. Give some other examples of formulas that end in '-ide' vs '-ate'.

Magnesium nitride, Mg_3N_2 , is an ionic compound containing magnesium ions and **nitride ions**. It is a greenish yellow powder which is sometimes used as a catalyst.

Magnesium nitrate, $Mg(NO_3)_2$, is an ionic compound containing magnesium ions and **nitrate ions**. It is a white powder which is used in fertilisers and as a dehydrating agent.

What is different about the two ionic formulas, Mg_3N_2 and $Mg(NO_3)_2$?

- Both contain Mg²⁺ ions, but what is • different about their negative ions?
- How does this impact the overall ionic ٠ formula of the compound?

AB-7272

Learning objectives

By the end of today's lesson, you will be able to:

- Recall the names and formulas of common positive and negative ions.
- Write formulas of ionic compounds.

Activity 1

On your worksheet, there are some important ionic formulas which you will need.

- Complete the table to show the correct formulas and names of each ion.
- Once you have finished, raise your hand to have your work checked.
- You will then become an 'expert group' and will go and check other learners' formulas

Answers

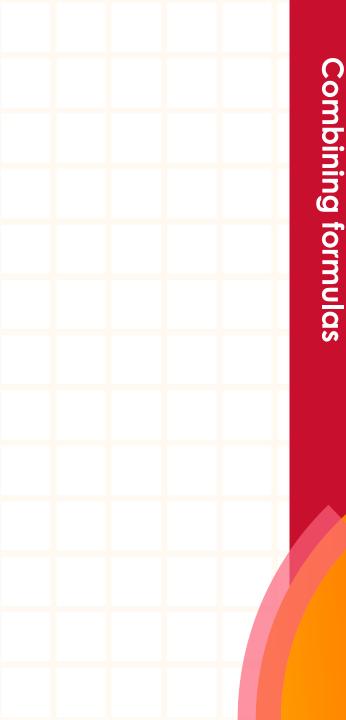
Formula	Name of ion	
Na ⁺	Sodium ion	
K+	Potassium ion	
Ag ⁺	Silver(I) ion	
${\rm NH_4}^+$	Ammonium ion	
Ca ²⁺	Calcium ion	
Mg ²⁺	Magnesium ion	
Pb ²⁺	Lead(II) ion	
Zn ²⁺	Zinc ion	
Cu ²⁺	Copper(II) ion	
Fe ²⁺	Iron(II) ion	
Fe ³⁺	Iron(III) ion	
Al ³⁺	Aluminium ion	

Formula	Name of ion
Cl-	Chloride ion
Br ⁻	Bromide ion
Ι-	lodide ion
NO ₃ ⁻	Nitrate ion
N ³⁻	Nitride ion
OH-	Hydroxide ion
CO ₃ ²⁻	Carbonate ion
S ^{2–}	Sulfide ion
S04 ²⁻	Sulfate ion

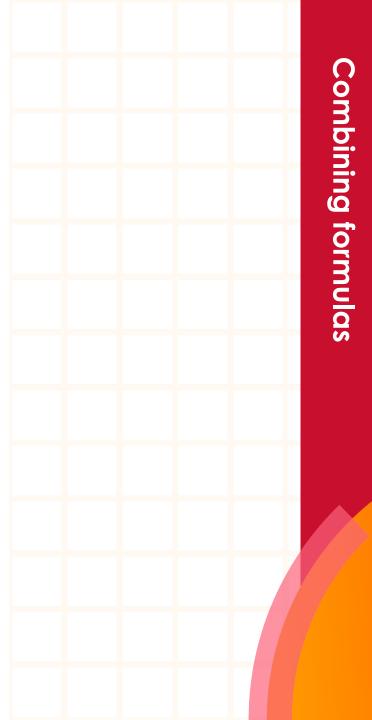
When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.

On your mini-whiteboard, write the formulas of:

- A sodium ion
- A bromide ion
- The formula of sodium bromide

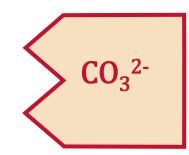

When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.

e.g. sodium bromide


The formula is NaBr

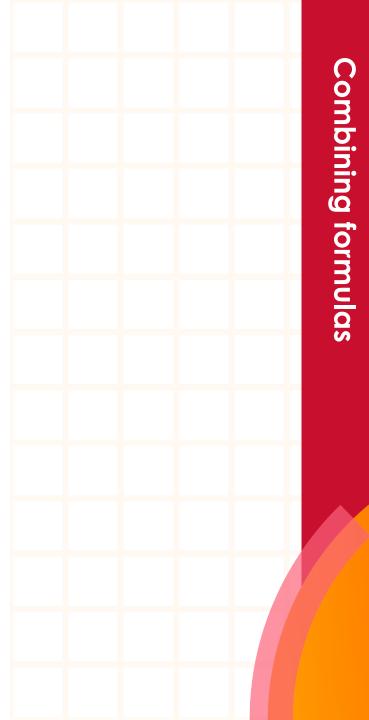
When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.

On your mini-whiteboard, write the formulas of:


- A sodium ion
- A carbonate ion
- The formula of sodium carbonate

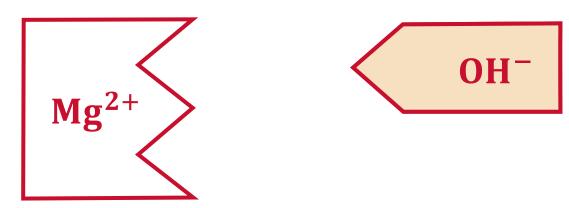
When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.

e.g. sodium carbonate

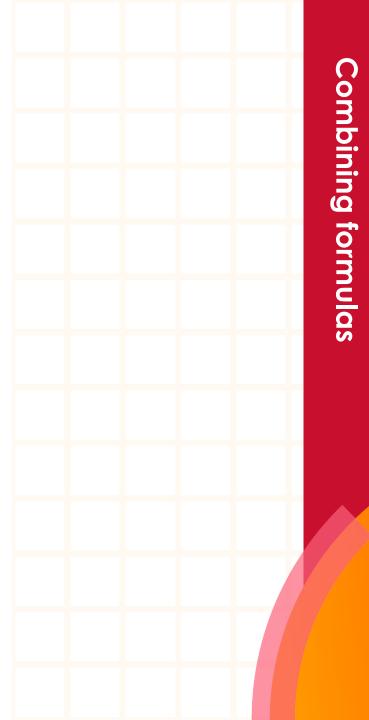

The formula is Na₂CO₃

Con		
nbir		
Buit		
Combining formulas		
nuic		
S		

When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.


On your mini-whiteboard, write the formulas of:

- A magnesium ion
- A hydroxide ion
- The formula of magnesium hydroxide



When combining ions to make ionic formulas, the positive and negative charges must balance. This is because ionic compounds are overall **neutral**.

e.g. magnesium hydroxide

The formula is Mg(OH)₂

Activity 2

Using the cards and the worked examples we have discussed:

- Complete the table to give the formulas of the ionic compounds.
- Once you have finished, raise your hand to have your work checked.
- You will then become an 'expert group' and will go and check other learners' formulas.

Extension opportunity: which other ionic formulas can you make from your cards?

Answers

Compound	Formula
Magnesium carbonate	MgCO ₃
Silver(I) nitrate	AgNO ₃
Calcium bromide	CaBr ₂
Copper(II) hydroxide	Cu(OH) ₂
Iron(II) nitrate	Fe(NO) ₃
Iron(III) iodide	FeI ₃
Lead sulfate	PbSO ₄

Compound	Formula
Zinc nitrate	$Zn(NO_3)_2$
Potassium sulfate	K ₂ SO ₄
Magnesium sulfide	MgS
Aluminium hydroxide	Al(OH) ₃
Ammonium chloride	NH ₄ Cl
Sodium hydrogen carbonate	NaHCO ₃
Iron(III) carbonate	$Fe_2(CO_3)_3$

What do we now know about the differences between magnesium nitride, Mg₃N₂ and magnesium nitrate, Mg(NO₃)₂?

- Write a short explanation of the different ions these compounds contain.
- You may wish to use diagrams like those used in Activity 2.
- If you came up with other examples of 'ides' and 'ates', do the same for these compounds!

