STUDENT SHEET

Johnstone's triangle 11-14 years

Available from <u>rsc.li/4laqj4k</u>

Melting ice and boiling water: Johnstone's triangle

Learning objectives

- 1 Describe what happens to a substance when it is heated or cooled in terms of state changes.
- 2 Use melting and boiling point information to work out the state of a substance at a given temperature.

Introduction

Substances can exist in different states and can change between states at specific temperature points.

Johnstone's triangle

In chemistry we make sense of the things that we can see by representing what we can't see using formulas, equations, diagrams and models.

Johnstone's triangle is a way of thinking about these different concepts as different corners of a triangle:

- Macroscopic what we can see. Think about the properties we can observe, measure and record.
- Sub-microscopic smaller than we can see. Think about the particle or atomic level.
- Symbolic representations. Think about how we represent chemical ideas, including symbols and diagrams.

Being able to connect and move between these three different levels is important for scientific understanding.

Johnstone's triangle 11-14 years

Available from <u>rsc.li/4laqi4k</u>

STUDENT SHEET

Name the changes of state that are happening:

- 1. To the ice cube
- 2. In the kettle

Describe how the kettle turns water from the liquid to gas state.

Sub-microscopic – smaller than we can see

Water has a melting point of 0°C and a boiling point of 100°C.

Work out the state at the temperatures given below and complete the particle diagram for each. Write the state beneath your diagram.

Symbolic – representations

The diagram shows the particle diagrams for the three states of matter with arrows to show the different changes of state.

Add a label to each arrow to name the change of state.

melting boiling

freezing condensing