

Melting and freezing stearic acid

Learning objectives

- Determine the melting and freezing point of a sample of stearic acid by setting up and carrying out an experiment.
- 2 Carefully make temperature readings and record them in a table.
- 3 Plot and interpret a heating and/or cooling curve.
- 4 Use particle theory to explain what happens during melting and freezing.

Introduction

In this experiment, a solid turns into a liquid and then the liquid turns into a solid. The energy changes are examined.

Equipment

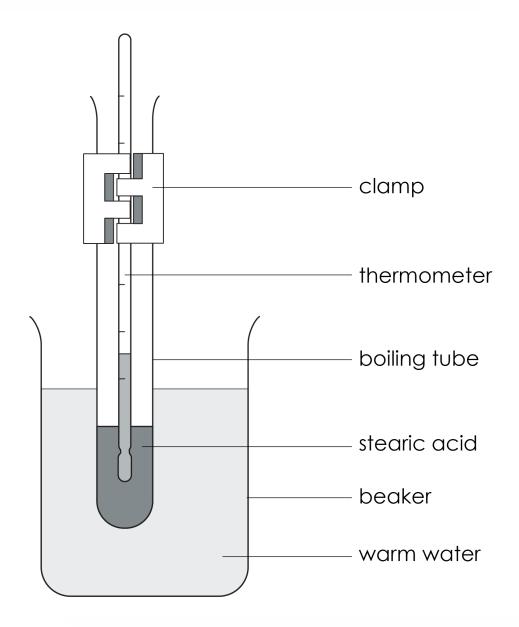
Apparatus

- Safety glasses
- Beaker (250 cm³)
- Boiling tube
- Thermometer (0–100°C)
- Stop clock
- Clamp, stand and boss
- Bunsen burner
- Tripod
- Gauze
- Heat resistant mat

Chemicals

• Stearic acid (octadecanoic acid)) (less than 5 g)

Health and safety

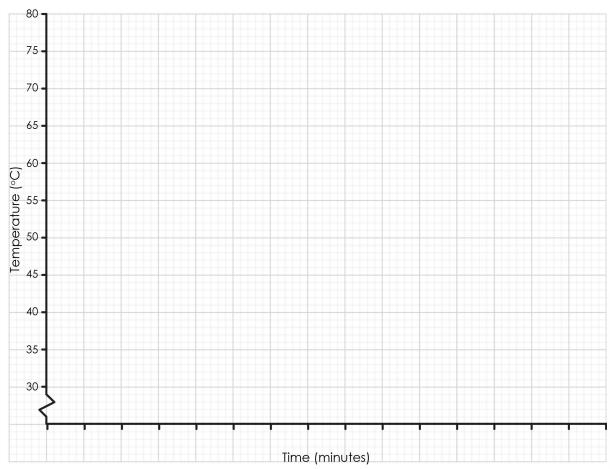

- Wear eye protection
- Do not handle hot equipment

Available from rsc.li/3Q4V5NW

Method

- 1. Put about 150 cm³ water into the beaker.
- 2. Heat it on a tripod and gauze until the water just starts to boil.
- 3. Set up the apparatus as shown in the diagram and start the timer. Keep the water boiling, but not vigorously.
- 4. Using a suitable results table, record the temperature of the stearic acid every minute until it reaches about 80°C. Note on your results table the point at which you see the solid start to melt.
- 5. Use the clamp stand to lift the tube from the hot water. Record the temperature every minute as the stearic acid cools until it reaches about 30°C. Note on your results table the temperature at which you see the stearic acid begin to solidify,

Diagram


Results table

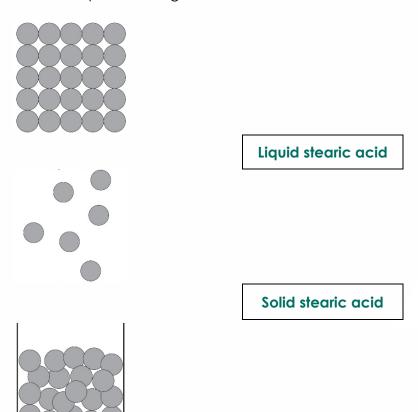
Time (minutes)	Temperature (°C)	Observations

Questions

1. Plot a graph of the results on the axes provided and draw a line of best fit.

2. Describe the shape of the line graph you have drawn.

3. Label the parts of that graph that show stearic acid:


- (a) as a solid
- (b) as a liquid
- (c) melting
- (d) freezing

4. Use your graph to determine the:

- (a) melting temperature
- (b) freezing temperature

5. Draw a line from each particle diagram to the correct label:

6. Complete the sentences using the words below. The same word can be used more than once and some words may not be needed.

	ecreases	stays the	_	ribrate	regular ir shape solid	freezing
In solid ste	earic acid,	the particles	are very clos	e togethe	r in a	
pattern. T	he particle	s	around	a fixed po	osition. Solids I	have a fixed
	As	the tempera	iture increase	s, the kine	tic energy of	the particles in
the solid _		and sc	the particles	vibrate fo	aster.	
During		, the force	es of attraction	n betwee	n the particle	es are
	by [.]	the kinetic er	nergy of the p	oarticles. T	he particles a	ire now free to
move. The	ey are in th	e	state.			
As the ter	nperature i	ncreases, the	e kinetic ener	gy of the I	particles in the	e liquid
increases	and so the	particles mo	ove more			