14-16 years

Chemical misconceptions II:

Spot the bonding

https://rsc.li/3ILA7mt

Introduction

Instructions

The diagrams in this lesson show different chemical substances and a range of models.

For each diagram either write:

- The name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Sodium chloride lattice

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Diamond lattice

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Benzene molecule

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Copper lattice

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Hydrogen fluoride molecule

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Liquid water

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Fluorine molecule

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Silver nitrate solution

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Oxygen gas

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Sulfur molecule

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Sodium atom

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Aluminium chloride dimer

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Carbon dioxide molecule

0 = C = 0

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Ethanoic acid dimer

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Ammonia molecule

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Magnesium oxide lattice

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Liquid hydrogen chloride

- the name(s) of the type(s) of bonding present
- 'none' (if there is no chemical bonding)
- 'don't know' (if you are unsure)

Sodium chloride lattice: answer		Que
	Spot the bonding:	stion 1
Na CI INA CI INA CI INA	ionic	answ
Cl^{-} (Na ⁺) Cl^{-} (Na ⁺) Cl^{-} (Na ⁺) Cl^{-}		ers
Na ⁺ Cl^- Na ⁺ Cl^- Na ⁺ Cl^- Na		
Cl ⁻ Na ⁺ Cl ⁻ Na ⁺ Cl ⁻ Na ⁺ Cl ⁻		
Na ⁺ $Cl^ Na^+$ $Cl^ Na^+$ $Cl^ Na$		

Diamond lattice: answer

Spot the bonding:

covalent

Liquid water: answer

Spot the bonding: covalent

More types of bonding to spot:

polar hydrogen van der Waals forces dipole-dipole forces

Silver nitrate solution: answer

Spot the bonding: covalent (water) ionic (silver nitrate)

More types of bonding to spot: polar hydrogen van der Waals forces dipole-dipole forces solvent-solute interactions

Oxygen gas: answer

Spot the bonding: (double) covalent

More types of bonding to spot: van der Waals forces sigma + pi

Sodium atom: answer

Spot the bonding:

no chemical bonding

(although intraatomic forces of a similar nature)

Ethanoic acid dimer: answer Spot the bonding: covalent More types of bonding Η Η Η to spot: polar H hydrogen

H

Iodine lattice: answer

Spot the bonding:

covalent

More types of bonding to spot:

van der Waals forces

Magnesium oxide lattice: answe	er	Que
	Spot the bonding:	stion
Mg ²⁺ 0^{2-} Mg ²⁺ 0^{2-}	ionic	17: answers
$0^{2^{-}}$ Mg ²⁺ $0^{2^{-}}$ Mg ²⁺		
Mg ²⁺ (0^{2-}) Mg ²⁺ (0^{2-})		

