Tiny cubes of magnetite form superstructures under a magnetic field
A team led by Rafal Klajn at the Weizmann Institute of Science in Israel found that by varying the density of the cubes and the size and direction of the magnetic field they can control the kind of structure the cubes self-assemble into, which depends on the interplay between intermolecular forces and magnetic interactions. Under an increasing magnetic field the nanocubes line up to make a ‘belt’, while under a constant magnetic field at high density they curl round and form a helix. Single helices tend to clump together to make double helices (like the rope-like structure shown above) or even triple helices.
This article provides a link to coverage by Chemistry World
Thanks for using Education in Chemistry. You can view one Education in Chemistry article per month as a visitor.
Registration is open to all teachers and technicians at secondary schools, colleges and teacher training institutions in the UK and Ireland.
Get all this, plus much more:
Already a Teach Chemistry member? Sign in now.
Not eligible for Teach Chemistry? Sign up for a personal account instead, or you can also access all our resources with Royal Society of Chemistry membership.