Tiny cubes of magnetite form superstructures under a magnetic field
A team led by Rafal Klajn at the Weizmann Institute of Science in Israel found that by varying the density of the cubes and the size and direction of the magnetic field they can control the kind of structure the cubes self-assemble into, which depends on the interplay between intermolecular forces and magnetic interactions. Under an increasing magnetic field the nanocubes line up to make a ‘belt’, while under a constant magnetic field at high density they curl round and form a helix. Single helices tend to clump together to make double helices (like the rope-like structure shown above) or even triple helices.
This article provides a link to coverage by Chemistry World
Choose an account option to continue exploring our full range of articles and teaching resources