Sunshine instead of moonshine

Distillationshutterstock317043701300tb

Source: © Shutterstock

Nanoparticles use light to separate ethanol from water

Researchers in the US have demonstrated a remarkably efficient new way to distil alcohol from water – using light. The method needs less energy than conventional thermal distillation and produces a more concentrated distillate. While the new method is unlikely to displace conventional distillation in industry, the researchers say, it could find niche applications in separation and purification processes.

Naomi Halas and co-workers at Rice University in Houston laced a mixture of water and ethanol with gold–silica nanoparticles and shone laser light on the suspension from above. When light hits a nanoparticle it both absorbs photons, becoming warmer, and scatters photons, which can be picked up by its neighbours, increasing their temperature. In this way light energy becomes trapped close to the surface, causing local heating and driving off the more volatile of the two components – in this case ethanol.

This article provides a link to coverage by Chemistry World

Thanks for using Education in Chemistry. You can view one Education in Chemistry article per month as a visitor. 

A photograph of a teacher standing in a white lab coat, speaking with a class of children in a laboratory, is superimposed on a colourful background. Text reads "Teach Chemistry means support for classroom and staff room".

Register for Teach Chemistry for free, unlimited access

Registration is open to all teachers and technicians at secondary schools, colleges and teacher training institutions in the UK and Ireland.

Get all this, plus much more:

  • unlimited access to resources, core practical videos and Education in Chemistry articles
  • teacher well-being toolkit, personal development resources and online assessments
  • applications for funding to support your lessons

Already a Teach Chemistry member? Sign in now.

Not eligible for Teach Chemistry? Sign up for a personal account instead, or you can also access all our resources with Royal Society of Chemistry membership.