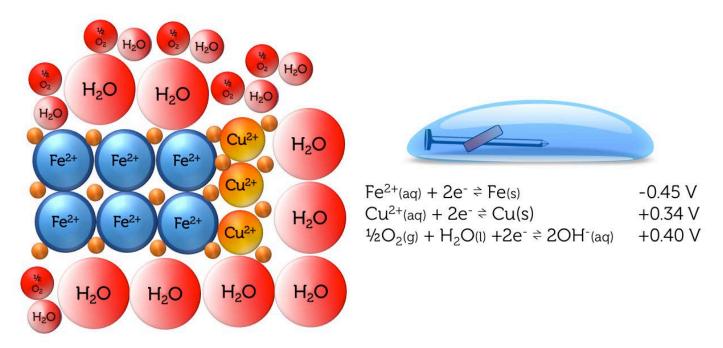
Nailing corrosion


Education in Chemistry March 2016 www.rsc.org/eic

Metal corrosion – what happens next?

When iron corrodes it's called rusting. We'll be looking at how we can speed up or slow down the process of rusting.

First you need to understand the simplified model we'll use. We're aiming to be able to predict what will happen when magnesium or copper are placed in contact with iron in water with oxygen present. The model will eventually look like this:

In this model the size of the circle indicates how good a substance is at attracting electrons. Smaller circles indicate the particle is better at attracting electrons. In example 3 on the next page, copper is better at attracting electrons (the orange dots) than water. As such, copper cannot donate electrons to water.

We will be using a special indicator called ferroxyl. This pale orange solution turns blue in the presence of iron ions and pink in the presence of hydroxide ions (formed if water accepts electrons from another substance).

For each situation (numbers 1–5) place a tick in one box in each row to predict what will happen. Number 3 has been done for you.

1. Iron in water	Electrons are able to move from iron to water	Electrons are not able to move from iron to water	
Fe ²⁺ Fe ²⁺ Fe ²⁺ H ₂ O H ₂ O H ₂ O	Hydroxide ions will be formed – the indicator will turn pink	The indicator solution will remain a pale orange colour	
H ₂ O H ₂ O H ₂ O	Iron ions will dissolve – the indicator will turn blue		
2. Magnesium in water	Electrons are able to move from magnesium to water	to move from magnesium to water	
H ₂ O H ₂ O Mg ² ·	Hydroxide ions will be formed – the indicator will turn pink	The indicator solution will remain a pale orange colour	
Mg ²⁺ Mg ²⁺	Magnesium ions will dissolve – but the indicator won't turn blue as it detects iron ions		
3. Copper in water	Electrons are able to move from copper to water	to move from copper to water	
Cu ²⁺ H ₂ O	Hydroxide ions will be formed – the indicator will turn pink	The indicator solution will remain a pale orange colour	
H ₂ O H ₂ O	Magnesium ions will dissolve – but the indicator won't turn blue as it detects iron ions		
4. Magnesium with iron	Electrons are able to move from magnesium to iron	Electrons are not able to move in either direction	Electrons are able to move from iron to magnesium
Fe ²⁺ Mg ²⁺	The indicator is in solution so we can't measure any effect here just by touching the two metals		
5. Copper with iron	Electrons are able to move from iron to copper	Electrons are not able to move in either direction	Electrons are able to move from copper to iron
Fe ²⁺ Cu ²⁺	The indicator is in solution so we can't measure any effect here just by touching the two metals		

Choose the correct words to add below. Some you will not need to use, some you will use more than once.

positive, negative, attracted to, repelled by, harder, easier, stop, continue.

Although electrons can only be donated from some metals to wate metal ion dissolves into solution, leaving behind a delocalised elecation a charge. The metal ion in solution will be	etron, the remaining piece of metal will have
dissolves into solution the charge on the metal will be even more _ gets for more ions to dissolve into solution because the piece of metal.	
Unless the remaining electrons can move away from the piece of r this process will	metal and be given to another substance,