CIDER
 Writing a method for practicals

 eic

Use CIDER to write a method

Control variables
Independent variable
Dependent variable
Equipment
Risk assessment

Adding Mg to HCl to test rate of reaction

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the 100 cm^{3} conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

© AQA Education

Adding Mg to HCl to test rate of reaction

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the 100 cm^{3} conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

Find CIDER in this method

Control variables
Independent variable Dependent variable Equipment
Risk assessment

Find CIDER: Answers

Volume of HCl

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the 100 cm^{3} conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock. Length of Mg
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

Control variables

Independent variable Dependent variable Equipment Risk assessment

$$
\begin{aligned}
& \text { What is staying } \\
& \text { the same? }
\end{aligned}
$$

Find CIDER: Answers

Concentration of HCl

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the $100 \mathrm{~cm}^{3}$ conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

Control variables

Independent variable Dependent variable Equipment Risk assessment

What are you changing?

Find CIDER: Answers

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the 100 cm^{3} conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

Control variables

Independent variable
Dependent variable
Equipment
Risk assessment
What are you measuring?

Find CIDER: Answers

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the $100 \mathrm{~cm}^{3}$ conical flask.
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps 1-6 using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid.

Control variables

Independent variable Dependent variable Equipment
Risk assessment

What are you using?

Find CIDER: Answers

Put on goggles

Handle acid carefully

1. Measure $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid using one of the measuring cylinders. Pour the acid into the 100 cm ${ }^{3}$ conical flask. Handle glassware carefully
2. Fit the bung and delivery tube to the top of the flask.
3. Half fill the trough or bowl with water.
4. Fill the other measuring cylinder with water. Make sure it stays filled with water when you invert it into the water trough and that the delivery tube is positioned correctly.
5. Add a single 3 cm strip of magnesium ribbon to the flask, put the bung back into the flask as quickly as you can, and start the stopclock.
6. Record the volume of hydrogen gas given off at suitable intervals (eg, 10 seconds) in a table. Continue timing until the volume of gas does not change.
7. Repeat steps $1-6$ using $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

Control variables

Independent variable Dependent variable Equipment Risk assessment

> What will keep you safe?

